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1.0 I...roduction and Summary
1.1 Introduction

The Turbine Engine Division of the WL Aero Propulsion and
Power Directorate frequently carries out studies to determine the
potential of propulsion technology advancements and to assess the
impact of future weapon system requirements on propulsion concept
and cycle selection. To that end, a computer program was written
to provide a rapid response capability which gives consideration
to diverse mission requirements and accurate propulsion/airframe
integration.

To meet these needs the program has the following
capabilities:

o) estimation of installation effects on engine performance

o ability to calculate airplane performance in any user-
defined mission.

The latter capability is dependent upon several items, as
follows:

o calculation of airframe weight
o calculation of airframe drag

o calculation of mission performance segments such as
CLIMB, CRUISE, etc

o ability to assess the mutual influences between the
different technologies involved.

The program was written by adapting a set of existing
preliminary design programs into a unified program that can be
used to identify airframe/mission interaction effects on advanced
propulsion systems.

Criteria for the unified program include:

o rapid turnaround

o interactive capability

o simple to operate

o modular construction.




In conjunction with the program, a data base of several
"generic" aircraft configurations was provided. These generic
configurations serve as baseline designs that can be used to
assess the effects of selecting variations in engine, airframe,
and installation parameters. The selection of configurations
that have been the subject of serious study assures that the
parametric analysis will be carried out realistically.

This document provides an overview of the work accomplished
during the PWSIM contract and an introduction to the resulting
computer programs. For detailed information, see Figure 1-1.

1.2 Summary

The objective of this research was to develop a computer
program for the evaluation of air-breathing propulsion system
performance in interaction with aircraft of current or future
interest to the USAF. The program was required to allow
determination of the potential of propulsion technology
advancements and the impact of weapon system requirements on
propulsion concept and cycle selection. A major requirement in
such assessments is the evaluation of interaction effects between
the engines and airframes. The computer program was required to
synthesize a variety of vehicle concepts (Figure 1-2).

o a tactical fighter

o} supersonic interceptor
o supersonic cruise missile
o logistic transport

o lightweight fighter

o carrier air vehicle (first stage of a two-stage—to-orbit
system), and

o hypersonic interceptor.

To meet these objectives the plan of work involved
development of two computer programs each consisting of an
executive routine, two permanent modules, and an interchangeable
"data base”" module. Two programs were necessary because of the
unique mission requirements for the carrier air vehicle
configuration and the design implications imposed on it by the
mission requirement of the second-stage vehicle.
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These programs were mainly derived from several already in
use at Boeing, and the bulk of work was associated with adaption
and integration of these programs into distinct, compatible
modules.

The two permanent modules calculate engine installation
effects and airplane size and performance, respectively. To meet
the objective of realism (in a preliminary design sense) seven
data base modules were developed for use with the program; these
represent seven "generic" aircraft configurations. Each data
base module contains a data description of a baseline
configuration and several routines that allow the program user to
scale and modify the baseline with an input data file.

To evaluate the potential of propulsion technology advances,
it is necessary to measure their effect on the performance of the
system they are likely used in. To be useful, such assessments
must be made at the very early stages of technology development
to identify promising approaches. Thus, there is need for a
rapid response capability which gives consideration to a wide
range of configurations, diverse mission requirements, and
accurate propulsion/airframe interaction assessment.

The computer program that was developed is capable of
calculating either the mission performance of an aircraft of
known size or the size of such an aircraft required to perform a
specified mission. 1In executing these calculations, the program
takes account of the engine performance (as supplied by the
engine manufacturer), engine installation effects of the inlet
and nozzle on the engine performance, other engine/airframe
interactions, body volume dictated by engine dimensions, wing
size influenced by fuel tank volume, etc. and mission
requirements. The two main modules of the program deal with
engine installation analysis and airplane performance,
respectively.

The propulsion installation module is a simplified version
of the Boeing Engine Installation Analysis Program (EIAP) and
calculates the inlet, nozzle, and aftbody effects on the
uninstalled engine performance data supplied by the engine
manufacturer.

Inlet effects considered are inlet drag, inlet recovery, and
the effects of mismatched inlet air supply and engine air demand.
In addition to the effects on engine performance, the inlet
routines also allow evaluation of the inlet capture area; this
information is supplied to the data base routine to allow engine
dimensional considerations to be accounted for in the evaluation
of airframe geometry, drag, and weight. Exhaust considerations
included are gross thrust and aftbody drag effects.




The airplane performance module (incorporating an airplane
sizing option) allows the evaluation of mission performance for
an aircraft of known properties (including engines of known
ingstalled performance) and also allows "point performance"
evaluation at user selected values of weight, altitude, and Mach
number.

The mission analysis is performed by calculating aircraft
performance during distinct segments (CLIMB, CRUISE, COMBAT,
etc.) and linking these segments into a complete mission
description.

Seven data base modules were developed for use with the
computer program. Each data base represented a typical
configuration and was based on an actual preliminary design
studied at Boeing.

The data base module consists of:

1. Baseline configuration and modification module that
defines the baseline configuration and allows the user
to modify (with input data) many of the aircraft design
parameters (wing loading, aspect ratio, etc.)

2. A geometry module that evaluates the aircraft
dimensions, inlet size, fuel volume, etc.

3. A drag evaluation module that constructs drag tables for
use in the performance module, and

4. A weight module that calculates the fuel and operating
weights of the aircraft of known gross weight and
payload and feeds these numbers to the performance
module. '

2.0 Program Description

The Turbine Engine Division of the WL Aero Propulsion and
Power Directorate is continually engaged in internal studies to
determine the potential of propulsion technology advancements and
to assess the impact of future weapon system requirements on
propulsion concept and cycle selection. This information is
required to support Division Long-Range Propulsion planning and
program resource allocation in the exploratory and advanced
development areas.

To fulfill the need for a rapid response capability which
gives consideration to diverse mission requirements and accurate
propulsion/airframe integration (and thus provide timely




technical assessment program planning information), a
comprehensive automated evaluation process is required.

Large, complex computer programs have been developed by the
aircraft and propulsion industries to assess future system
requirements on advanced weapon system designs. Because of their
large computer storage requirements, extensive data base needs
and long execution times, these programs could not be efficiently
used by the Aero Propulsion and Power Directorate for advanced
propulsion assessment work.

The program described in this report combines features of
several existing programs for preliminary conceptual analysis
into a single program, tailored to specific needs for in-house
propulsion assessment. The program is small enough for use
interactively but retains sufficient detail in the engineering
calculations it performs to assess the effects of engine
installation, airframe size and geometry, and mission
requirements.

PWSIM is an interactive program for assessing the effects of
different engine cycles, engine installations, mission
requirements, and airplane geometry on airplane size and weight.

The program is presently able to support seven generic
aircraft types, but due to its modular construction, it can
accommodate additional configurations.

Configurations currently supported are:

o Tactical Fighter

o Supersonic Interceptor

o Supersonic Cruise Missile

o Long Range Transport

o Lightweight Fighter

o Carrier Air Vehicle

o Hypersonic Interceptor

The program has been coded in extended FORTRAN 77 and runs

on the CDC Cyber 175 computer under the NOS 2 operating system
with a required field length of about 220K octal words.




The complete program is stored in several different
permanent files: one containing the main program executive and
the others consisting of libraries of modules which are accessed
by the executive. The executive routine accepts the user’s input
data and controls the sequence of operation to obtain engine
performance data and then evaluates airplane size and mission
performance. The library modules are of three types:

o propulsion library
o performance library
o data base library.

The propulsion library file contains the routines required
to read the uninstalled engine performance data and the inlet and
nozzle characteristics and then performs the necessary
calculations to evaluate the installed engine performance. The
performance library contains the modules needed to calculate the
point performance and mission performance of an airplane derived
from a data base library.

Several data base libraries are available. Each data base
library contains all of the configuration related modules
required to define and scale the geometry of a baseline
configuration and evaluate its drag polars and operating weight.
To accommodate a new configuration, it is necessary to create a
new data base library. To execute the program, it is necessary
to LOAD the executive program with the performance and propulsion
libraries and with an appropriate data base library. Also needed
to execute the program are several sets of input data; most of
the input data are stored in permanent files, but the user has a
certain amount of control via interactive inputs. When the
program is executed interactively, prompting messages are
provided to the user at the terminal. These messages serve as a
guide to allow proper selection of the input required. Most of
the interactive inputs are for either selecting calculation
options or identifying input data files; some interactive
numerical inputs are required when the engine installation option
is sgelected.

2.1 Basic Options
The principal features of the program are:

° An engine installation module that converts engine
manufacturer’s uninstalled engine performance data into
installed performance data by evaluating the internal
losses and drag characteristics for the inlet and
nozzle/aftbody configuration.




o A set of data files containing inlet and nozzle/aftbody
performance maps applicable to suitable engine
installation configurations.

o A set of data modules containing data definitions of the
generic airplane configurations which allow assessment
of the geometric, aerodynamic, and weight
characteristics of scaled versions of a baseline
aircraft.

o Technology modules that provide rapid and reliable
estimates of airplane drag and airframe weight.

o A mission analysis module that allows the user to define
almost any practical mission.

o Mission segment modules that use the installed engine
performance data and calculated drag polars together
with accepted performance methods to assess time, fuel,
and distance required to complete the segment.

o The option to scale or "size" an aircraft for a given
fixed mission or to find the cruise range or loiter
endurance of an aircraft of prescribed size.

o The option to use the engine installation module or use
of previously installed engine performance data where
appropriate to reduce computation time and cost.

o A choice of interactive or batch operation.

o An output file providing graphics data for a
configuration drawing.

This section describes the capabilities and overall
operation of the program and outlines the options available to
the user.

The program’s principal function is to calculate airplane
mission performance for an airplane derived from one of several
baseline designs.

2.1.1 Mission Performance

Several important parameters affect the performance of an
aircraft, namely:

drag
weight
and propulsion system performance.




For an aircraft of known size and geometric proportions, the
drag and weight can be estimated (to a satisfactory degree of
accuracy) using methods combining analytical and empirical
relationships among certain important design parameters.

With such a design the propulsion engineer has an extremely
useful tool for assessing the payoff obtained from gains in
engine performance, comparing the performance levels of different
engines or evaluating the impact of propulsion concept and cycle
selection.

The performance level of the propulsion system is not solely
a function of the engine or engines selected; it is also strongly
dependent upon the way in which the engines are combined with the
airframe. For this reason, it is important to assess the effects
of the inlet and exhaust systems on the net thrust produced by
the engine at any flight condition of interest.

The Propulsion/Weapon System Interaction model computer
program (PWSIM) has the capability of evaluating drag, weight
(and, therefore, fuel load) and propulsion system performance
(including installation effects). It has the further
capabilities of calculating airplane performance in terms of the
basic components of mission performance such as climb, cruise,
loiter, etc. (referred to in this document as mission segments).

In addition to the above, the program provides a facility
for calculating the performance of a mission composed of a string
of mission segments selected by the user.

Two modes of mission performance are available to the user:

o the aircraft begins the mission at a specified weight
(and fuel load) and the program calculates the extent of
the mission, the end being determined by attaining a
weight equal to the sum of the operating weight, any
remaining payload and a specified amount of reserve
fuel. (Note: the extent of the mission can have
several meanings since the mission requirements may
include varying amounts of cruise or loiter.)

o the requirements to achieve a given fixed mission may
dictate the use of more fuel than can be carried by an
assumed baseline design. The so called "SIZING" option
of the program allows scaling of the baseline aircraft
to accommodate the extra fuel while taking into account
the resulting increases in weight, drag, and engine
size.




Figure 2.1-1 shows the interrelationships among the
different technologies involved in assessing airplane
performance; the message in the box in the lower right corner
indicates the two modes of matching the airplane to requirements.

2.1.2 Baseline Designs

The items in Figure 2.1-1 that occupy rectangular boxes are
all configuration—-dependent. In order for the program to support
a wide variety of configurations, each of these areas of the
computer program would require sufficient input data (defining
the configuration geometry and its influence on drag and weight)
to differentiate among the various techniques and methodologies
required for the different configurations. Program modules
designed to accommodate a wide range of configurations would have
the further disadvantage of being complicated because of the
large number of decisions required in selecting an appropriate
sequence of calculations which results in long execution times
and difficulty of maintenance.

In PWSIM these disadvantages have been minimized by the use
of "baseline" configurations that have been coded into the
configuration—dependent parts of the performance analysis
process. By this technique the amount of input data required to
define the airframe geometry, weight, and drag is minimized and
corresponding program logic is kept relatively simple. A
sufficiently large input data set is retained to allow
considerable variations from the baseline configuration both in
geometry and application.

The apparent disadvantage of being limited to specific
configurations is easily overcome because the technology
dependent program logic is contained in modules that evaluate
airplane geometry, drag and weight, respectively. Thus, an
alternate baseline can be "swapped—-in" to the program with
relative ease.

The program currently supports seven baseline designs:

o Tactical Fighter

o Supersonic Interceptor

o Supersonic Intercontinental Cruise Missile

o Long Range Logistic Transport

o Lightweight Fighter
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o Carrier Air Vehicle
e} Hypersonic Interceptor

Each was designed by a team of experienced preliminary
design engineers to meet specific requirements and as such
represents a reliable "point—of-departure” for parametric studies
of engine/airframe interactions.

2.2 Mission Analysis

This section describes the method of defining mission
profiles.

2.2.1 Background

In many simple performance programs, a mission profile is
set up by coding a special subroutine to handle the scheduling of
mission segment subprograms, to pass each segment of the input
data it needs, and to receive from each segment the output values
computed. Complete flexibility as to number, type, and sequence
of segments can be achieved in this way; however, the process of
setting up or changing a mission program coded in this way is
quite cumbersome, since every change requires recompiling and
redebugging. In addition, such programs rapidly become expert-
dependent, due to the extensive prior knowledge required of the
programmer.

Instead of being coded into separate subroutines, mission
profiles are defined by a set of input records. At execution
time subroutine MISSION schedules segment calculation in the
proper sequence, transfers data between segments and handles any
iterations required to compute mission distance, time or fuel.
All these function are made transparent to the user.

2.2.2 Missions
WHAT A MISSION IS

In the current context, a mission is a flight path that
describes the intended usage of the airplane. Missions can be
separated into two main classes: fixed performance and variable
performance. In a fixed performance mission, all distances and
times are fixed, and the result to be computed is the required
fuel. In a variable performance mission, the available fuel is
fixed and either the mission distance or the mission endurance is
to be computed. Variable performance missions are further
subdivided into three categories:
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o Range Missions - The airplane takes off and lands at
different places. The computed range is the distance
between the takeoff and landing points.

o Radius Migsions - The airplane takes off and lands at
the same place. The computed radius is the maximum
separation distance of the airplane from the takeoff and
landing point.

o Endurance Missions - All distances in the mission are
fixed. The result to be computed is the time that can
be spent aloft.

PWSIM has the capability of computing all these types of
missions.

HOW A MISSION IS DEFINED

For analysis, the mission profile is broken down into a
number of distinct maneuvers called mission segments.
Performance within each segment, that is the distance, time, and
fuel required to perform the desired maneuver, is computed from
appropriate simplification to the full equations of motion.
Individual segments are linked end to end to approximate the
desired flight path.

Consider the sample mission profile illustrated in Figure
2.2-1. This profile is typical of high-low-low-high range
missions, with cruises of various lengths performed first at
altitude then at sea level, and finally at altitude again.

Climbs and accelerations are performed for gaining altitude and
speed, but no distance credit is taken for descending or
decelerating. A total of nine segments are used to describe this
flight path.

The data needed to define a mission segment is illustrated
in Figure 2.2-1. In general, the definition includes the segment
type, the available thrust, the initial and final operating
conditions (Mach number and altitude) and for segments such as
cruise and loiter, the length of the segment. Other segments,
such as acceleration and climb, have lengths determined by the
initial and final Mach numbers and altitudes. The performance of
the airplane in any one segment is a function of the segment
definition and the airplane weight in that segment and hence of
the position of that segment in the mission profile sequence.

The mission shown in the example is a variable performance

range mission i.e., the amount of fuel in the airplane (at the
start of the mission) is fixed and the total mission distance is

15
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Takeoff allowance: 5 minutes at intermediate power.
Accelerate from Mach 0.3 to Mach 0.5 at sea level.
Climb to 25,000 ft. and Mach 0.75.

Cruise at 25,000 ft. and Mach 0.75. Elapsed distance at the
end of this segment is 40% of the total range.

Cruise at sea level and Mach 0.80 for 75 nmi.

Cruise at sea level and Mach 0.70. Distance is to be fixed
by the total range capability.

Climb to 30,000 ft. and Mach 0.70.

Cruise at 30,000 ft. Total distance for segments 7 and 8 is
200 nmi.

Loiter 20 minutes at sea level and Mach 0.35.

Figure 2.2-1., Sample Mission Profile
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to be computed. The distance covered in all segments will be
fixed by the segment definition except for segments 4 and 6.
These cruises are free to expand and contract until the required
migssion fuel agrees with the fuel available in the airplane.
Distance will be divided up between these two segments so that
40% of the total range is covered before the end of segment 4,
and 60% is covered after.

The appearance of a variable length cruise is indicative of
a variable performance range or radius mission. A radius mission
must have at least two variable distance cruises, of course,
since both the outbound and return leg distances are to be
computed. For a variable performance endurance mission, all
cruise distances must be fixed, and exactly one loiter segment
must have a variable time. The extent of the loiter will then be
computed so that all available fuel is consumed. For a fixed
performance mission, all segments have a fixed length.

2.2.3 Misgsion Segments

A mission profile is defined to the program by setting up a
mission definition file. This file consists of a number of
records, each one of which defines a single mission segment. The
sequence of the mission segment records in the mission definition
file determines the sequence in which the mission segments are
executed to form the mission profile. The airplane weight at the
start of one segment is set equal to the airplane weight at the
end of the preceding segment.

The program has a library of modules to compute fuel used in
different types of mission segments including:

o TAXI operating at a fixed Mach number, altitude, and
power setting for a fixed period of time.

o TAKEOFF accelerating from a standstill to a prescribed
percentage over stall speed and climbing to a
prescribed height.

o ACCEL accelerating at constant altitude and power
setting from the initial to the final Mach
number. Positive or negative acceleration is
acceptable.

o CLIMB climbing from the initial to the final altitude.
Available climb schedules include constant
equivalent airspeed, constant Mach number, or a
combination of the two. Climb schedule may be
selected by the module for best rate of climb.




o CRUISE
o REFUEL
o COMBAT

o DESCENT

o LOITER

o DROP

performance may be computed for constant
altitude cruise or Breguet-type climbing cruise;
cruise Mach number and altitude may be selected
by the user or computed for best range factor.

transfer fuel for tanker to primary mission A/P.
Tanker performance simulates the KC-135A.

performing a prescribed number of max sustained
g-turns. Maneuver load factor may be set by
structural limits, maximum lift coefficient or
available thrust and may be altered by transfer
from the initial to the final Mach number and
altitude.

dropping from the initial Mach number and
altitude to the final Mach number and altitude.

loiter may be performed at constant altitude or
constant lift coefficient. Mach number and
altitude may be specified by the user or may be
computed for optimum endurance factor.

dropping payload, fuel tanks, or otherwise
introducing a weight discontinuity to the
mission profile. Drag for the items dropped may
be changed by selecting an index that selects
one of five arrays of additional drag vs. Mach
number.

These are the segments that may be linked together to approximate
the mission profile.

HOW A MISSION SEGMENT IS DEFINED

In the most general case, the following data are required to
fully define a mission segment.

o segment type defines the basic rules governing

performance calculation. Examples are:
TAXI, TAKEOFF, ACCEL, etc.

o power setting refers to a thrust index number defined

in the engine deck. For some segment
types this index number defines the
actual thrust used: TAXI, TAKEOFF,
ACCEL, CLIMB, COMBAT and DESCENT. For
other segment types, CRUISE, REFUEL and
LOITER, this index defines the max
available thrust.
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o extent defines the duration of some segment
types. May specify time for LOITER, fuel
transferred for REFUEL, time for TAXI,
distance for CRUISE, or number of
complete turns for COMBAT. For other
segment types (TAKEOFF, ACCEL, CLIMB
DESCENT) the segment duration is governed
by the initial and final Mach numbers and
altitude.

o initial Mach number
o initial altitude

o final Mach number

o final altitude

WHAT THE MISSION SEGMENTS DO

The following paragraphs describe the function of the
mission segment performance modules.

In several of the SEGMENTS described below, a flag (TLIMIT)
is set to 1.0 if there is insufficient thrust available to
achieve the required performance. When program control returns
from the SEGMENT calculation to the MISSION subroutine, this
value of the flag (TLIMIT) causes printout of the mission history
to halt at this segment and print a message to that effect.

TAXI i

The TAXI module computes the amount of fuel required to |
operate at the specified Mach number, altitude and power setting
for the time specified (in hours). 1In this and all subsequent
segments, zero is not a valid Mach number.

TAKEOFF

The TAKEOFF segment approximates the time and fuel used in
takeoff, that is, between brake release and the end of climbout.
Takeoff is approximated by a two-part acceleration to 120% of
stall speed, where stall speed is determined by the configuration
definition variable CLMAX.

The first part of this acceleration approximates the ground
roll up the lift-off speed which is 110% of stall speed. An
average acceleration is computed at 0.707 of lift-off speed using
thrust determined by the specified power setting and drag
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computed at lift coefficient CLG, a configuration definition
variable. A drag increment for landing gear, Figure 2.2-2, is
included.

The second part of the takeoff accelerxation, from 110% of
stall speed to 120% of stall speed, approximates the climbout.
The average acceleration is computed at 115% stall speed, at
specified power setting and 1l-g 1lift coefficient. The gear drag
increment is included over half this segment.

ACCEL

The ACCEL segment computes the distance, time and fuel
consumed in a constant altitude acceleration (or deceleration)
between the specified initial and final Mach numbers. Thrust is
computed at the input power setting.

Values for altitude and initial Mach number must be supplied
to segment ACCEL; however, this segment has two options for
computing final Mach number. If "MAX" is specified in place of
the final Mach number the segment computes the termination Mach
number from placard-limit or thrust-limit conditions. If "MIN"
is specified, the final Mach number is computed from the stall
margin or thrust limit. Configuration definition variables
required to use these options include:

ZMSLM Max sea level Mach number; defines the constant
equivalent airspeed part of the placard.

ZMSUP Max Mach number at altitude; defines the constant
Mach number part of the placard.

CLMAX Takeoff configuration max lift coefficient.

CLMAXF Ratio of landing configuration max lift coefficient
to takeoff configuration max lift coefficient.

An exceptional condition occurs when insufficient thrust is
supplied for acceleration or excess thrust is supplied for
deceleration. This exceptional condition is flagged by the ACCEL
segment by setting flag TLIMIT=1.

CLIMB
The CLIMB segment ccmputes the distance, time and fuel to
climb from the initial Mach number and altitude to the final Mach

number and altitude. Thrust is computed at the specified power
setting.
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The climb schedule used is determined by the specified Mach
numbers and altitudes, as shown in Figure 2.2-3. First, if the
equivalent airspeed at the specified final Mach number and
altitude is greater than the equivalent airspeed at the specified
initial conditions, Figure 2.2-3a, then the climb is performed
holding equivalent airspeed constant at the initial value. 1In
this case, the computed final Mach number may not be equal to the
specified final Mach number. Second, if the specified final
equivalent airspeed is less then the specified initial equivalent
airspeed and if the specified final Mach number is greater than
the specified initial Mach number, Figure 2.2-3b, then a two-
segment climb is performed; a constant equivalent airspeed climb
is performed until the Mach number equals the final Mach number
and then a constant Mach number climb is performed until the
altitude is equal to the final altitude. Finally, if the
specified final Mach number is less than the specified initial
Mach number, Figure 2.2.3c, then the climb is performed holding
Mach number constant at the specified initial value. Here again,
the calculated final Mach number may not agree with the specified
final Mach number.

The climb schedule may be optimized by specifying "OPT" in
place of either the initial or final Mach number (or both). The
quantity for which "OPT" was specified will then be computed so
as to maximize rate of climb at the specified altitude and power
setting. Climb schedule determination will then proceed as
above.

An exceptional condition occurs when the airplane becomes
thrust-limited along the climb schedule before reaching the final
altitude. This condition is flagged by setting the flag
TLIMIT=1.

CRUISE

The CRUISE segment computes the time and fuel required to
cruise the specified distance. The specified power setting
defines the maximum available cruise thrust.

The cruise Mach number may be a specified constant or may be
optimized by the segment. If a constant is specified, Mach
number is held fixed at this value throughout the cruise. If
"OPT" is specified in place of the initial Mach number, both the
initial and final Mach numbers are optimized independently, and a
slight acceleration or deceleration might result.

Three options are available for determining the altitude

profile of the cruise. If the initial altitude is a specified
constant and the final altitude is not the same constant, then a
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Breguet—-type climbing cruise is performed. Next, if the initial
and final altitudes are specified equal to each other, than a
constant altitude cruise is performed. Finally, if "OPT" is
specified in place of the initial altitude, then both initial and
final altitudes are independently computed so as to maximize
range factor.

If insufficient thrust is available for cruise, the segment
value of the flag TLIMIT is set to 1.0.

COMBAT

The COMBAT segment computes the time and fuel required to
perform the specified number of 360-degree turns at max sustained
load factor. Thrust is computed at the specified power setting;
load factor is computed so that the resulting drag agrees with
available thrust. The required drag may be increased (or
decreased) by the specific energy released (or consumed) in
transferring from the initial to the final operating conditions.
If final conditions are not specified, they are taken to be the
same as the initial conditions.

If insufficient thrust is available at the specified power
setting, this is indicated by the flat TLIMIT=1.0.

DESCENT

The DESCENT segment computes the distance, time, and fuel
used in descending from the initial Mach number and altitude to
the final Mach number and altitude. During the descent, the rate
of change of speed with altitude is held constant.

Optionally, the user may specify "MIN" in place of the final
Mach number. 1In this case, the final Mach number will either be
120% of the landing stall Mach number (as determined by
configuration definition variables CLMAX and CLMAXF) or the lower
thrust limit Mach number, whichever gives the higher value.

REFUEL

The REFUEL segment computes the distance, time, and fuel
consumed in receiving the specified weight of fuel from a tanker.
The fuel transfer rate and downwash velocity simulate the KC-135A
tanker; however, no check is made as to whether the KC-135A could
operate at the specified Mach number and altitude or could
transfer the required weight of fuel.

The user may specify "MAX" in place of the weight of fuel to
be transferred. This signals the segment that fuel is to be
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transferred until the weight of the airplane is brought up to
TOGW, a configuration definition variable.

The final segment weight is restricted to the weight at
which the airplane would become thrust limited at the segment
Mach number, altitude and power setting. The segment limits the
fuel transfer to no more than the amount that would bring the
airplane weight up to the thrust limit weight.

LOITER

The LOITER segment computes the fuel required to operate for
the specified number of hours at the operating conditions
defined. The specified power setting defines the maximum thrust
available.

The loiter Mach number may be a specified constant or may be
optimized by the segment. If a constant is specified, the entire
loiter is performed at this Mach number. If "OPT" is specified
in place of the initial Mach number, the initial and final Mach
numbers are optimized independently and a slight acceleration or
deceleration may result.

Three options are available for determining the altitude
profile of the loiter. If the initial altitude is given as a
constant and the final altitude is not given as that same
constant, then the segment is performed holding W/d constant at
the initial value. Second, if the initial and final altitudes
are the same constant, then the entire segment is performed at
the constant altitude. Finally, if "OPT" is specified in place
of the initial altitude, then both the initial and final
altitudes are optimized.

If insufficient thrust is available to perform the loiter,
then the segment thrust limit flag is set (TLIMIT=1i.).

DROP

The DROP segment provides a way to introduce a weight or
drag discontinuity into the mission profile. When the DROP is
encountered, weight is decremented by the specified number of
pounds and drag is incremented by a value found in one of five
arrays of D/q vs. Mach No. selected by the value of INDEXST. No
distance, time, or fuel is used by a DROP segment.
2.3 Propulsion Installation Methodology
2.3.1 Introduction

The Engine Installation Analysis Program (EIAP) has been
designed to execute on the Boeing Computer Services (BCS) EKS
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computer system. It is an overlaid program, which is written
entirely in FORTRAN IV, and occupies 130K core locations when
resident in the computer. The program is interactive in nature
in that it asks the user questions in order to input data and to
attach files needed for execution.

The program is a suboverlay of the Propulsion/Weapon System
Interaction Module, that computes installed engine performance
based on a set of engine library maps and an "uninstalled" engine
data file. The map library consists of sets of inlet and nozzle
performance data. Section II contains an overall description of
the installation program and a discussion of the procedures used
to calculate inlet performance, nozzle performance, and the
installed gross thrust. This manual also contains a macro flow
chart of the installation module and detailed description of the
program subroutines.

The execution of EIAP is discussed at length in the EIAP
User’s Manual. The manual describes the program’s interactive
inputs that are required from the user, as well as the tables of
inlet and nozzle performance, uninstalled engine data, and drag
reference conditions, which must exist prior to execution. 1In
general, the interactive inputs are used to select the following:

1. file of uninstalled engine data to be processed
2. inlet performance maps from map data base

3. nozzle performance maps from map data base

4. 1inlet capture area sizing criteria

5. nozzle type (axi or 2-D, convergent or con—-di) and limit
on nozzle exit area (optional)

6. file of drag reference conditions
7. output options.
2.3.2 Structure and Usage

The engine installation analysis program was designed to
speed up the process of calculating installed propulsion system
performance data while including realistic effects of inlet and
nozzle losses due to drag and internal performance. The program
was also designed to satisfy two additional criteria: (1) the
accuracy of the data generated by the calculation procedure must
be suitable for use in preliminary design studies (when detailed
knowledge of all geometric features of the design are not known)
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and (2) the method must reflect the effects of throttle-—-sensitive
changes in inlet and nozzle/aftbody losses.

EIAP was developed from previous propulsion system
installation programs. EIAP utilizes a computer—-stored library
of inlet and nozzle performance characteristics and uninstalled
engine data as input to interactively calculate installed
propulsion system performance. A chart showing how this computer
program is used in a typical preliminary design analysis process
is presented in Figure 2.3-1. The calculation of installed
propulsion system performance is almost instantaneous if the
tabulated performance characteristics of the desired inlet and
nozzle/aftbody configurations are available are previously-stored
computer files. To provide a readily-available source of inlet
and nozzle/aftbody data, a library of inlet and nozzle/aftbody
performance characteristics was created that covered a wide
variety of possible configurations. During execution of EIAP,
these files are attached externally to the program. The user
then enters the interactive input commands. The output from the
program can be displayed on a terminal or stored on a output disk
file for disposition to an off-line printer.

The single most important factor that made it possible to
reduce the time required to perform installed propulsion system
performance calculations was the extensive use of computerized
files. These files contain tables of data representing the
nondimensionalized performance characteristics of inlets and
nozzles. They allow instant retrieval of inlet and
nozzle/aftbody data that can be matched with the uninstalled
engine performance data (also contained in a computer file)
during the execution of the program. The formats of the inlet
and nozzle/aftbody computerized files and the uninstalled engine
data were selected to provide a standardized frame work in which
either experimental data or the results of analytical
calculations could be used. The input format for the data
remains constant, but the data that go into the tables can come
from various sources depending on the amount of time available
for preparing the data and/or the amount of experimental data
available. Because data in the input tables can be changed as
better data become available, it is possible to improve the
accuracy of the installed propulsion system performance
calculations as the aircraft development cycle progresses from
preliminary design through full-scale flight test.

The installation module consists of calculations that fall
into one of two main categories. The first, the inlet procedure,
handles the functions of sizing the inlet, matching the inlet
input data with engine airflow demand, and obtaining the matched
inlet performance parameters from the inlet data tables. Engine
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corrected airflow is the matching parameter between engine data
and inlet data. The second category, the nozzle procedure,
handles the calculation of the nozzle/aftbody drag and nozzle
internal performance. Nozzle pressure ratio, P, /P,, is used as
the matching parameter.

INLET PROCEDURES

The inlet performance procedure of EIAP is considerably
longer than the nozzle performance procedure. This is because
the individual inlet comporent drags that contribute to the total
inlet drag must be calculated separately. Each of these drags
(spillage, bleed, and bypass) must be determined individually as
a function of mass flow ratio, which adds to the complexity of
the computer program.

INLET PERFORMANCE

The inlet performance maps are input to the program prior to
the call to the inlet procedure. This procedure sizes the inlet
capture area (if it is required) and converts the inlet
performance maps into total pressure recovery and inlet drags
that are matched to the corrected airflow demands of the engine.

The operation of the inlet procedure is shown schematically
in Figure 2.3-2. The connecting link between the engine data and
the inlet procedure is engine operation at a desired inlet mass
flow ratio and recovery using the design engine airflow demand.

A specified capture area size can be input, if desired, instead
of requiring the program to calculate the size.

The inlet input requires three tables of input data which
describe the performance characteristics of the inlet.
Engineering data obtained from wind tunnel tests and theoretical
calculations are used to obtain the inlet performance
characteristics. The format of the inlet tables is shown in
Figure 2.3-3. The nomenclature for the tables is shown in Figure
2.3-4. Together, the tables form a map, which is entered into
the EIAP map library.

The inlet procedure recognizes two modes of inlet operation:
low speed mode and high speed mode. The low-speed mode is used
only at very low Mach numbers, e.g., takeoff conditions, when
only high engine power settings are likely to be of interest and
inlet drag is negligible. The high speed mode is used over the
remaining Mach number regime. The EIAP calculations of recovery
and drag are illustrated in Figure 2.3-5. The required
performance maps are input as tables, as indicated. In this mode
and the low-speed mode, recovery is read directly out of Table
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103 as a function of local Mach number only. The inlet drag,
including spillage, bleed, and bypass drag, is found in Table 140
as a function of Mach number and the ratio of inlet corrected
airflow and inlet capture area (WCAC). WCAC is calculated from
the engine demand, inlet recovery, and the inlet supply mass flow
ratio (found in Table 104 as a function of Mach number). The
minimum Mach number entered in Table 140 is used as the minimum
value for which the high speed mode is used.

If the corrected airflow delivered by the inlet is
inadequate to meet the engine demand at the scheduled recovery,
the program will permit the inlet to operate at an excessive
supercritical margin. The recovery will be lowered sufficiently
to match the engine corrected airflow demand, and an appropriate
message will warn the user of an undersized inlet.

INLET SIZING

The inlet sizing procedure in the computer program
determines the inlet capture area required to match the largest
engine airflow demand at each Mach number. From these calculated
inlet sizes, the largest required size is selected as the inlet
capture area. For sizing calculations, an input curve (Table
104) of recommended (matched) inlet airflow variations (A,/A,)
vs. M, and an input curve (Table 103) (see Figure 2.3-3 for these
tables) of recommended (matched) inlet total pressure recovery
vs. M, are used to determine the required capture area variation
with Mach number. These parameters are used in the following
equation to calculate area, A.:

p
W‘/Bp - Ae

A in? = Aoene - Tomarcien
<’ (A,/A.) MATCHED  0.343(A,/A.) yarcuep

(o}

INLET RECOVERY CORRECTION

The engine input provides the required data for inlet drag,
inlet recovery, nozzle/aftbody drag, and nozzle coefficient
calculations. The engine section of EIAP calculates only the
changes in internal performance due to changes in inlet recovery.
Changes in inlet recovery produce a directly proportional change
in nozzle pressure ratio, airflow, and fuel flow because the
nozzle throat area does not change. Furthermore, it is assumed
that engine data are calculated with MIL-STD-5008B recovery. All
inlet recovery changes are made relative to that value unless the
user inputs a different reference recovery. Thermodynamic data
from Keenan and Kaye tables have been "curve-fitted", and
subroutines are provided to calculate the thermodynamic
properties of the exhaust gases.
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The gross thrust calculation procedure is as follows: for
each altitude, Mach number, and power setting, the net thrust
(Fy), fuel flow (W;), corrected airflow (Wf92/82), nozzle throat
area (Ay), nozzle exit area (A9), and nozzle thrust coefficient
(CFG) are given.

A standard atmosphere and MIL Standard 5008B inlet recovery
are used to calculate the airflow at the engine face. Gross
thrust is found for the given engine data (before any changes in
inlet recovery) by the following equations.

wW,v
FGou: = FN * g

The desired inlet recovery is obtained from the inlet
procedure, and the engine gross thrust is first calculated with
MIIL, Standard recovery and then with the calculated recovery. To
calculate engine gross thrust, the engine corrected airflow
remains constant for any change in inlet recovery, and at any
given power setting, the nozzle exhaust areas and burner fuel-air
ratio also remain constant. The engine performance for any
change in inlet recovery is calculated by the following
relations:

(We) pp = Wy %—Z—:i"u 50088

(We) o = F%%mb 500858

(W) e = Z%Z;Mm 50088
(Pr,/Py) ge = P/ P, “:i—:;_;’:—;

" MIL 5008B

(RF - Recovery factor)

After the above quantities are c¢omputed, the corrected
quantities (Wy)pr, (Wp)ge, (W,)pe and (P /P, )pr are used to compute a
new gross thrust, Fg. This new gross thrust and the gross
thrust, Fg,calculated using the same subroutines and the
uncorrected (MIL 5008B) quantities (W,, W, W,, P,/P)) are used to
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compute a ratio, Fy;/F;. This ratio is then used to obtain the
new value of gross thrust, Fgew which is found by the ratio:

F. =F. .G
Gysw Gowp F,
1

_ The ratio procedure is used to minimize any inaccuracies
that may be caused by assuming burner efficiency (N,) is constant
for all engine operating conditions.

The net thrust and fuel flow after correction for inlet
recovery are:

s . WV_EF
e = Foum 9 RFy
R
WFR=WFRF

FMIL

and the installed propulsion system thrust and SFC are:
Fyy = Fyy = Diveer ~ Doz * Divoz rer
WF'

SFCy = —*

=

NOZZLE PROCEDURE

The purpose of the nozzle/afterbody drag and CFG input data
and calculation procedures is to calculate nozzle internal losses
and nozzle/afterbody drag.

NOZZLE/AFTERBODY DRAG

The nozzle/afterbody drag is computed using tables which
represent the afterbody drag characteristics (Figure 2.3-6) as a
function of P,,/P,, A9/A10, M,, external input geometry and engine
data. Parameters obtained from the engine calculations include
nozzle throat area, nozzle pressure ratio, freestream conditions,
and ideal gross thrust. An essential geometry input is the
nozzle exit area, A,, which is required for boattail drag
computation. This parameter is obtained in one of two ways:
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MACH, P3g /P ,A9/A 10
PTg/Pg ,A3/AS0RPS.

Y

CALCULATE AFTBODY DRAG,

- -

—
MACH _ -
J&m IA10 _ -
- -
-
{a) MACH
A9 /Ag
\ B
Cfg
OR C¢ INTERMEDIATE
(b} TTalPg (e PTg/Pq

AFTBODY DRAG AND THRUST COEFFICIENT

Figure 2.3-6. Nozzle Performance Calculation
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1. From the engine input data when the existing
axigsymmetric nozzle data are used,

2. From a calculation of fully expanded A, as a function of
nozzle total pressure ratio.

The nozzle/aftbody drag coefficient is shown in Figure 2.3-
6(a). The drag coefficient is obtained as a function of the
ratio of nozzle exit area to maximum cross—sectional area, A,/A,,,
and free—-stream Mach number, and nozzle exit static pressure
ratio, P_,,/P,. An illustration showing the nozzle aftbody drag
procedure is presented in Figure 2.3-7.

NOZZLE GROSS THRUST COEFFICIENT

The nozzle gross thrust coefficient (CFG) tables are used to
provide a means for correcting uninstalled engine data for the
effects of nozzle internal performance that is different from the
nozzle internal performance used in generating the uninstalled
engine data. The use of a thrust coefficient table is optional.
If no table is used, however, the program will calculate an
adjustment to the CFG of the uninstalled data and use this new
CFG to find the new installed thrust. The adjustment is only
made if the nozzle conditions result in over or under expansion
losses.

Two different types of data input formats are provided for
the CFG tables. They are shown in Figures 2.3-6(b) and (c). The
first table shows nozzle gross thrust coefficient as a function
of nozzle static pressure ratio and area ratio. A,/A, is
calculated from tabulated input values provided along the second
table; however, the nozzle gross thrust coefficient is input as a
function of nozzle total pressure ratio and maximum afterburning
and intermediate (dry) power settings. This input data format is
based on the use of a variable area nozzle which is scheduled to
provide an optimum variation of area ratio as a function of
nozzle pressure ratio. The engine power setting and nozzle
pressure ratio are obtained from the engine input data in the
engine performance calculations.

NOZZLE REFERENCE CONDITIONS

The calculated installed propulsion system performance data
include the throttle-dependent inlet and nozzle/aftbody losses.
To determine the throttle-dependent portion of the nozzle/aftbody
drag to be included as a loss to the propulsion system
performance, a reference condition has been established for the
nozzle/aftbody drag as follows:
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INTERNAL INPUTS

ENGINE EXTERNAL INPUTS
PROGRAM
AFTBODY
DECK GEOMETRY
Ao
Ao’ %
| 0 ®Rer
ENGINE FLOW
PARAMETERS

P_ 1/
Ag' T8 PO'AB

|"' —————————— T
2 |
: NOZZLE ]
| AFTBODY |
' DRAG |
| TABLES |
‘ | NOZZLE-AFTBODY
l | SUBPROGRAM
| |
| !
: NOZZLE :
| CFG !
l TABLES :
|
| | TOTAL
| | NOZZLE- RETURN
| AFTBODY
: +— DRAGAND s TOMAN
___________ 3 CFG PROGRAM

Figure 2.3-7. Nozzle-Aftbody Procedure
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The nozzle/aftbody increment to be inciuded in propulsion
system installed net thrust will be defined as zero when the
nozzle is at its maximum (full—-open) geometry and operating
at a nozzle static pressure ratio, Py /P,, equal to 1.0
(fully expanded). The nozzle/aftbody drag at this condition
will be included in the aerodynamic drag. Incremental
changes in nozzle aftbody drag due to changes in
nozzle/aftbody geometry and/or nozzle static pressure ratio
will be included as propulsion system drag. This reference
condition is illustrated in Figure 2.3-8 for a typical set
of nozzle/aftbody drag data.

THERMODYNAMIC PROPERTIES

Thermodynamic properties required for throat calculations
are obtained using the functions shown in Figure 2.3-9. The
functions listed here are "curve-fits" of Keenan and Kaye data.
The gas tables are primarily used to calculate exhaust nozzle
static pressures and jet velocities.

ENERGY BALANCE FOR EXHAUST GAS CALCULATIONS

If the temperature at the engine compressor face, airflow,
the bleed mass flow (BL), pressure ratio and fuel flow are known,
the exhaust gas enthalpy (h) and relative pressure (P,) can be
calculated from the energy balance:

Wyhy + W0, = Wghy + Wehy + Wy hp,

(for either mixed or non mixed flow engines)

For mixed flow fans or a turbojet:

Wo = W, = Wgr *+ W,
(f/a)e = Wf/(W2 - WBT.)
h; = (Wh, + W/Qhg) /Wy (Wy hy is considered negligible)

P, = t'(h, t/a)g

Iy
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THERMODYNAMIC
SUBROUTINE CALCULATIONS

Enthalpy as a function of
temperature (degrees R) and

H = HOFT (T, FOA) fuel-air ratio
Temperature as a function of

T = TOFH (H, FOA) enthalpy and fuel-air ratio i
Relative pressure, (P,) as a
function of enthalpy and

PR = PROFH (H, FOA) fuel/air ratio
Enthalpy as a function of
relative pressure and fuel-air

H = HOFPR (PR, FOA) ratio
Sonic velocity as a function
of total enthalpy and fuel-air

C = COFH (H, FOA) ratio
Sonic velocity as a function
of static enthalpy and fuel-

C = COFHS (H, FOA) air ratio

Figure 2.3-9. Thermodynamic Subroutines

NOZZLE GROSS THRUST CALCULATION

The calculation procedure in this section applies to both
mixed and non mixed flow nozzles.

CONVERGENT NOZZLE

The velocity at the throat for a convergent nozzle is a
function of the total enthalpy (assuming the throat is choked).

Cg = f (hT,f/a) 8
and the static pressure is a function of the static enthalpy

(Cq) 2
2gJ

Ty = f(h, f/a),

P, = f(h, f/a),
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Py /Py = (P,)a/P,

is obtained from the tabulated engine input data as a
F(P.S., alt., M) or it is calculated by the procedure
described in the "Nozzle Pressure Ratio Calculation”
section.

Py = Pp/ (P /P,)

The area of the throat is

_ (WRT
Ap* (PCB)

and the thrust is
WS VB

F, =

g +A8*(P8 _Pamb)

CONVERGENT-DIVERGENT NOZZLE (Fully Expanded)

If the exhaust flow is fully expanded, the static pressure
of the nozzle exit is equal to ambient, and the exit velocity is
a function of the total to static enthalpy.

PI, - Pr.(Pamb/PB)

hy, = £(P,, f/a),
T, = f(h, f/a),

Since hy = h,

V, = [2gU(hy - hy) ]2
The exit area is
Ay = WoRyT,/ PypyVy

and the gross thrust is
UAD CF,.
7 g
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CONVERGENT-DIVERGENT NOZZLE (Not Fully Expanded)

If the exit area of a convergent-divergent nozzle is less
than required for full expansion, the exit static pressure will
be higher than ambient. The throat conditions are known;
therefore, a guessed exit velocity gives:

hy = hy - Vi/2gJ

T, = f(h, f/a),
P, = £(h, f/a),
P - Pl’y
. Pt&
= P9 = = (PAV)
W, R(Tg)Agv9 (PAV), RT 9

(Cg — stream thrust coefficient)

An iteration on V, to make W, = W, will result in the exit
conditions for a given area.

The gross thrust is:

Fy = (£ + PAYy Cs = Panthly

NOZZLE PRESSURE RATIO CALCULATION

The exhaust nozzle pressure ratio can be calculated if
thrust, fuel flow, and airflow are known. The gross thrust is
calculated as follows:

Fg ( Fne t ! Ft am)
W,V
g

C,,.c

F =

ram

and the nozzle exit conditions are calculated by assuming that
flow is fully expanded:
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Wy = W, ~ Wpy + W,
hy, =h, = hy + (QpW,/ W)
Ty, = £ (hg, £/a),
Vo = Falg) /W,
hy = hy - Vi/2g0
P, = £(h, f/a),

(P,)q = £(hy, £/a),

since P, = P,

Pp/Pyy = (P, )8/P,

The pressure ratio calculation will be in error, an amount
relative to the value of the thrust coefficient (C,), because
this is usually unknown if pressure ratios and exhaust areas are

not given.

2.4 Program Structure

2.4.1 Overview

The PWSIM program system consists of:

(1)

(ii)

(iii)

(iv)

(v)

(vi)

a driver program that controls the sequence of
computations determined by the input options
selected by the user

a library of propulsion installation routines

a set of formatted data files containing propulsion
installation data for a wide variety of engine
installation configurations and operating conditions

a library of mission performance calculation modules

a set of libraries of baseline geometry, drag and
weight scaling routines - one library for each of
the baseline configurations

an input data set defining the user’s selection of
the various program options and the parameters
describing the deviation of design from the
baseline. This data set consists of a FORTRAN
NAMELIST containing both numerical and character
data
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(vii) a formatted data set containing definitions of up to
20 missions

(viii) a further set of input that is supplied by the user
either interactively (at the computer terminal) or
as data entries in the input stream of a batch job.

The complicated nature of engine installation calculation

and the large amount of data generated during the installation
calculations necessitates that the program be arranged in an
overlay format to keep the core memory requirements within
acceptable limits. Figure 2.4-1 illustrates the hierarchy of the
overlay structure (and also indicates the names of the routines
that are accessed within each overlay).

2.4.2 Program Flow

The sequence of activity in the main overlay is shown as a
functional flow chart in Figure 2.4-2.

The sequence of calculations, shown in Figure 2.4-2 is as
follows:

1. Fetch the General Input and Mission Definition Files to
the local operating system.

2. (i) Read and check the MISSION input file
{(ii) Read the GENERAL input file (NAMELIST file)

3. (a) If an error is detected or an "end of job" input
flag (ENDJOB = 'YES’) is read, stop execution;

(b) If all is well proceed to Step 4.
4. Execute the baseline geometry calculations to evaluate:
engine scale
nozzle area
aftbody drag reference area

These data are required for subsequent engine installation
calculations.

5. (a) If installed engine data are already available

proceed to Step 9 (this is denoted by the flag ENGRED set to
"YES')
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Figure 2.4-2. Functional Flowchart of PWSIM
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(b) If no engine data have been accessed proceed to
Step 6. This is detected by the flag ENGRED set to a value of
'NO’ .

6. (a) If the engine installation procedure is to be used
(1f INSTREQ = 'YES’) go to Step 8.

(b) If the engine data is to be read from a file of
already installed engine performance - hereafter referred to as a
"Mark 11" file - (if ENGRED = 'NO’) go to Step 7.

7. Access the specified Mark 11 installed engine data file
and read its contents into memory. Set the flag that indicates
that engine performance data has been read (ENGRED = ’'YES’).

8. Perform the geometry calculations needed to calculate
the aftbody drag reference area, Al0, as this quantity is needed
for the installation calculations. On the first pass through the
geometry calculations, the airplane designer’s guess at the inlet
capture area may be used for the geometry calculations. The
correct value is obtained from the installation calculations
which cannot be performed until Al0 is known. Thus, a two-step
iteration is necessary. The first iteration calculates the Al0
value using an assumed capture area and then recalculates the
capture area using the new Al0.

9. Perform the engine installation calculations using the
current value of Al0, calculate the correct value of reference
capture area, RACAPT. If this is the second time through this
block:

write results to TAPE20

set flap to show installation is complete (INSTREQ = ’'NO’

set flap to show engine data has been read (ENGRED = ’'YES’).

10. Check to see if the installation calculation has
already been accessed.

a. Return to geometry calculation with correct value
of RACAPT

b. Go on to Step 11.

11. Perform the airframe technology calculations (geometry,
drag and weights) and the airplane mission calculations. Write
the results to TAPE 6.




12. Check the status of the ‘end of job flag’ ENDJOB
a. If ENDJOB = ’'YES’ stop execution
b. If ENDJOB = 'NO’ go to Stop 2-(ii).

It is to be noted that the engine performance data are
accessed (by reading the MARK 11 file or by installation) only
once per job. If subsequently the airplane size (and thus engine
size) is changed (for example, during a sizing iteration), then
the installed engine performance data are scaled rather than
performing another installation. To be strict, the uninstalled
data should be scaled prior to installation; since airplane
sizing can involve several iterations of engine size, the
technique of scaling the installed data is used to keep
computation time as low as possible.

An alternative way of looking at the program overall
structure is shown in Figure 2.4-3. This shows the main program
module and the three subservient libraries. The library shown
inside the box of dashed lines is that which contains the
geometry, drag, and weight modules for the configuration being
studied.

3.0 Data Base Descriptions

Seven weapon system preliminary designs are provided to
serve as point-of-departure baseline configurations for the PWSIM
program.

The conceptual data bases produced for each configuration
consist of several items that, taken together, will give a
thorough definition of the design—point aircraft and provide a
sound basis for parametric studies. The items contained in each
data base are:

(a) an outboard profile, three-view engineering drawing

(b) engineering description

(c) geometric summary

(d) weight statement

(e) drag polars

(f) engine performance data

(g) airplane performance in the design mission

(h) limitations on the applicability of the data base.
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The following sections contain detailed descriptions and
comprehensive data summaries of the selected baseline aircraft
configurations. Subsequent sections contain representative data
allowing the evaluation of the drag and weight penalties of
externally carried stores.

3.1 Tactical Fighter - Model 985-420
3.1.1 Concept Description

This aircraft is shown in Figure 3-1. The overall airplane
length is 62 ft 2 in and the wing span 50 ft 9 in. The wing has
a leading edge sweep of 37.5°, a reference wing area of 571 ft?,
an aspect ratio of 4.5, and a wing thickness ratio of 5% at the
side of body and 4% at the tip. A smooth variable camber leading
edge is used with a hinged, single slotted trailing edge flap
during landing approach. Wing camber is varied automatically
throughout the flight envelope for improved lift/drag ratio.
Hardpoints are provided for carrying external fuel tanks (for
extended range and ferry missions) and alternate weapon
configurations.

The airplane is designed for a one-man crew. Located
forward, aft, and below the crew compartment are the
avionics/electronics equipment compartments. Included in the
1859 1b of avionics equipment are target acquisition,
communication, navigation and identification, information
managements, and defense functions. ECS equipment, oxygen, and
electrical/hydraulic subsystem equipment are located in the
fuselage aft of the pilot. The body fuel is carried in integral
tanks with a capacity of 12,000 1b of JP—-4 fuel.

Two vertical fins are integral with the aft fuselage side
walls and have a total area of 110 ft?. Each uses a conventional
rudder (32% of the fin chord). All-moving, slab canards with an
exposed total area of 78 ft? are used for longitudinal and roll
control throughout the entire speed regime. Wing flaperons will
augment roll control throughout the flight envelope.

3.1.2 Aerodynamics

Estimated aerodynamic characteristics are presented in this
section for the 985-420. Figure 3-2 illustrates the complete
drag polar at three key conditions in the flight envelope.
3.1.3 Weights

The weight statement for the 985-420 is shown in Figure 3-3.
Weight estimating ground rules and assumptions are:
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Figure 3-2. Tactical Fighter, Drag Polars
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ir
985-42 NOSE STATION 0.
GROUP WEIGHT STATEMENT WEIGHT-LBS WING MAC 151.
PDWTS 01-0CT-82 VERSION LEMAC 407.
3-MAY-83 BODY LENGTH 746.
Body St Percent MAC
Wing 3728. 483.
Canard 566. 295.
Vertical Tail 665. 678.
Body 5180. 411.
Alighting Gear 1541. 410.
Nacelle or Eng Section 188. 603.
Air Induction System 963. 341.
Total Structure 12836. 438.
Engine + Accessories 4960. 603.
Starting + Control 160. 387.
Fuel System 7009. 420.
Total Propulsion 5829. 575.
Flight Control 939. 521.
Auxiliary Power Plant 240. 580.
Instruments 160. 175.
Hydraulic + Pneumatic 418. 517.
Electrical 922. 434.
Avionics 1859. 210.
Armament 340. 400.
Furnishings + Equip 220. 170.
Air Cond + Anti-Icing 756. 435.
Load + Handling 10. 430.
Total Fixed Equipment 5864. 370.
Weight Empty 24528. 454, 30.9
Crew 230. 170.
Unusable Fuel 130. 420.
0il + Trapped 0Oil 190. 603.
Gun Installation +
Ammo 685. 320.
Crew Equipment 50. 170.
AMRAAM Ejectors (6) 390. 450.
Non-Exp Useful Load 1675. 365.
Operating Weight 26203, 448. 27.1
Payload 2000. 450.
Fuel 11797. 420.
GROSS WEIGHT 40000 . 440. 21.6

Figure 3-3. Tactical Fighter Weight Statement
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o Fuel tanks are inerted with nitrogen gas from N,
generators.

o Inflight refueling provisions have been incorporated.
o Arresting tail hooks have not been incorporated.

o Engine inlets, pitot tubes and canopy have de-icing
systems.

0 Air conditioning systems are closed loop bootstrap plus
liquid cycle cooling variety.

o Provisions for weapon hardpoints on wing and fuselage
have been incorporated. Each hardpoint assumes multi
weapong control in terms of attachment and launching.

o The APU is an IPU "Integrated Power Unit." 1Its function
is to operate as a starter and an emergency power systemn.

o The landing gear CBR is 9. Note: CBR (California
Bearing Ratio) is a measure of the bearing strength of
the airfield from which the aircraft must operate.

o Hyvdraulic system operates at a pressure of 4000 psi.
o Flight control system utilizes fly-by-wire technology.

o Flight design weight equals gross weight less 20 percent
of the on-board fuel weight.

o Landing weight equals the gross weight less 40 percent of
the on-board fuel weight.

o No weight penalty has been assessed for incorporation of
Mission Adaptive Wing (MAW) .

o TAD is 1987, IOC is 1993.
3.1.4 Propulsion System

Uninstalled engine data were computed using the PWA engine
cycle program, PWA CCD 1178-06.01. This engine has a bypass
ratio of 1.0, an operating pressure ratio of 25, and a max burner
temperature of 3000°F. 1Installation effects were estimated using
the Engine Installation Analysis Program. The inlets are under
wing, centerline mounted, two-dimensional external compression
downward spilling fixed horizontal ramp, which allow the airplane
to achieve the M = 2.0 dash speed at altitude, and provide inlet




flow protection during high angle-of-attack maneuver conditions.
The inlet ducts are designed with structural radar—-absorbent
materials (RAM). The capture area of each inlet is 5 ftZ.

Engine mounted 2-D, C-D nozzles are arranged side-by-side
and incorporate variable throat area capability for augmented
engine operation. Adequate cooling flow is provided to nozzle
surfaces to minimize IR signature and to allow application of RAM
for reduced RCS. Installed thrust and SFC curves for subsonic
and supersonic cruise conditions are shown in Figure 3-4 through
3-5.

3.1.5 Performance

This aircraft was designed to fly to a radius of 1000 nmi
and patrol on station for 1 hour before returning to the starting
point. A summary of the basic sizing mission is shown in Figure
3-6. A summary of the design mission segment by segment is given
in Figure 3-7.

3.2 Supersonic Interceptor - Model 985-430
3.2.1 Concept Description

This vehicle, illustrated in Figure 3-8 has an overall
airplane length of 93 ft 4 in and a wing span of 38 ft 5 in. The
wing has a leading edge sweep of 75° on the main inner wing
section and 55° on the outboard section, a reference wing area of
1002 ft?, an aspect ratio of 1.47, and a wing thickness ratio of
4.4% at the side of body and 1.9% at the tip. A smooth variable
camber leading edge is used with a hinged, single slotted
trailing edge flap during landing approach. Wing camber is
varied automatically throughout the flight envelope for improved
lift/drag ratio. At low speeds, the leading edge vortex flap is
deployed, as is the high lift canard. The wing provides volume
for approximately 7770 1lb of fuel in integral wing tanks.

The airplane is designed for a one-man crew. Located
forward, aft, and below the crew compartment are the
avionics/electronics equipment compartments. Included in the
2699 1b of avionics equipment are target acquisition,
communication, navigation and identification, information
management, and defense functions. ECS equipment, oxygen, and
electrical/hydraulic subsystem equipment are located in the
fuselage aft of the pilot. The body fuel is carried in integral
tanks with a capacity of 18,130 1lb of JP-4 fuel.

The vertical fin has an area of 130 ft?. A conventional 30%

rudder is incorporated. Additional directional stability is
provided by a ventral fin.
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The stowable canard has an area of 52 ft? and provides a
high l1ift capability at low speed through the use of a
slat/double slotted flap airfoil. Roll control is provided by
wing spoiler/slot deflectors and trailing edge flaperons.

3.2.2 BAerodynamics

Estimated aerodynamic characteristics are presented in this
section. Drag polars for the critical mission Mach numbers are
shown in Figure 3-9.

3.2.3 Weights

The weight statement and weight related design data are
tabulated in Figure 3-10. Weight estimating ground rules are the
same as those applicable to the tactical fighter (985-420) and
are listed in Section 3.1.3.

3.2.4 Propulsion System

The design mission for the Model 985-430 requires an engine
that can operate with low specific fuel consumption during cruise -
at Mach 3.0 and an altitude of 70,000 feet. To meet this goal,
engines of bypass ratio of 0.2, overall pressure ratio of 10 and
a maximum burner temperature of 3000°F were selected.

Two General Electric Mach 3.0 advanced technology
afterburning (GE16/J6-Bl) and dry (GE16/J5-H3R) turbojets provide
the necessary propulsion. The inlets are under wing,
axisymmetric mixed compression, which allow the airplane to
achieve the M 3.0 combat speed at altitude, and provide favorable
interference with the wing. The inlet ducts are designed with
structural radar—absorbent materials (RAM). The capture area of
each inlet is 10.2 ft?. Engine mounted axisymmetric nozzles
incorporate variable throat area capability for augmented engine
operation.

Installed SFC data are presented in Figures 3-11 and 3-12.
3.2.5 Performance

The Supersonic Interceptor has been designed to fly a 1000-
nautical-mile radius intercept mission out and back at Mach 3.0

(Figure 3-13).

A summary of the design mission history is shown in Figure
3-14.

3.3 Supersonic Intercontinental Cruise Missile
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T;85-43O INTERCEPTOR

MR,

NOSE STATION 0. IN

|

GROUP WEIGHT STATEMENT WEIGHT-LBS | WING MAC 376. IN
PDWTS 01-OCT-~82 VERSION LEMAC 503. IN
9-MAY-~83 BODY LENGTH 1120. IN
Body Sta Percent MAC
Wing 5420. 678.
Canard 220. 197.
Vertical Tail 801. 980.
Body 4559, 504.
Alighting Gear 2422. 597.
Nacelle or Eng Section 703. 865.
Air Inducting System 483. 768.
Total Structure 14607, 631.
Engine + Accessories 6342, 865.
Starting + Control 150. 768.
Fuel System 949, 670.
Total Propulsion 7441, 838.
Flight Control 1075. 785.
Auxiliary Power Plant 240. 830.
Instruments 160. 285.
Hydraulic + Pneumatic 831. 753.
Electrical 1080. 639.
Avionics 2639. 380.
Armament 340. 460.
Furnishings + Equip 315. 280.
Air Cond + Anti-Icing 1718. 641.
Load + Handling 10. 640.
Total Fixed Equipment 8468. 565.
Weight Empty 30516. 663. 42.6
Crew 230. 280.
Unusable Fuel 259. 670.
0il + Trapped 0il 171. 865.
Gun Installation +
Ammo 685. 390.
Crew Equipment 50, 280.
AMRAAM Ejectors (6) 390. 680.
Rotary Rack 300. 680.
Non—-Exp Useful Load 2085, 545.
Operating Weight 32601, 656. 40.6
Payload 2000. 680.
Fuel 25399. 670.
GROSS WEIGHT 60000. 663. 42 .4

Figure 3-10.
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3.3.1 Concept Description

An outboard profile of this vehicle is shown in Figure 3-15.
The overall vehicle length is 30 feet and the wing span is 15.5
feet. The wing has a leading edge sweep back of 70 degrees and a
trailing edge sweep forward of 40 degrees. The wing has a
constant thickness/chord ratio of 0.03 and a taper ratio of zero
(except that rounding the wing tips preserves a finite material
thickness at the tip).

The design is sized to achieve a range of approximately 3500
nautical miles using present state-of-the-art turbojet propulsion
and JP-10 type fuel. The payload consists of a single ballistic
vehicle having a suitable yield. The ballistic vehicle is shaped
and treated with radar absorbing material for penetration of the
terminal defenses in the target area. The avionics system
incorporates an inertial system having the capability to receive
updates from a Star Tracker or GPS thereby achieving the required
terminal accuracy.

The reference midcourse cruise configuration is designed for
air launch from a carrier aircraft at a Mach number of 0.6 at
30,000 feet altitude. Solid rocket boosters take the missile
from air carrier loiter conditions of M = 0.6 and 30,000-foot
altitude to cruise Mach number and altitude of 3.5 and 85,000 ft,
respectively. Two boost motors, one on each side of the lower
surface of the fuselage/wing intersection, are used to minimize
overall carriage length.

Insulated structure is employed with the insulation
protected by a thin outer layer of titanium having a high
emissivity coating. The load carrying structure is Epoxy-
Graphite for those parts of the structure where temperatures do
not exceed 400°F or Polyimide Graphite (up to 600°). The min k
insulation passively cools the fuel so that a 350° condition
(with 35 PSIA vapor pressure) is not exceeded for the flight.
Launch is assumed at high altitude, -65°F condition. The warhead
is also passively cooled. An allowance for active cooling of the
electronics is included in the fixed equipment.

3.3.2 Aerodynamics

The drag of this configuration has been estimated using the
results of wind tunnel tests carried out in the NASA Ames Z x 2-
foot transonic and 10 x 14-inch supersonic wind tunnels on a
model approximating this confiquration. The model differed from
the current design in that:

o the tested model had a semicircular, underwing fuselage
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o the tested model had a rearward sweep wing trailing edge
0 the tested model had no engine installation

o the tested model had one centrally located vertical fin
whereas the current design has two fins mounted at the
65% spanwise station on the wings

o the test Reynolds Number at M = 3.5 was 5.9 million
compared with 22.0 million for the full-scale vehicle.

Appropriate corrections to the test data result in the drag
polars shown in Figure 3-16.

3.3.3 Weights

The weight statement for the baseline Supersonic Cruise
Missile is shown in Figure 3-17.

The weight calculations take due account of the design
peculiarities of this vehicle (with reference to conventional
airplane design methods). Confidence in the approach taken has
been enhanced by using the Boeing weights methodology to
calculate the weight of the BAC ALCM"B" - a configuration for
which detailed weights data are available.

Design considerations influencing the weight calculation
include:

o Airframe Construction

Wing - The wing is constructed with a center core covered
with a 0.2-inch-thick skin of polyimide/graphite material.
Forward and aft of the center core are sections of chord 20
inches that have a similar structure but with a thin (0.05-inch)
skin of titanium bonded to it. Forward and aft of this region
are l4-inch chord sections constructed of a honeycomb core with a
0.08-inch titanium skin. The leading and trailing edges and wing
tip are made of solid titanium.

Fuselage - The fuselage is of skin-frame construction
composed of polyimide/graphite material with an outer skin of
0.02-inch gauge titanium. Between the polyimide/graphite and
titanium skins in a 0.125-inch layer of insulation; this keeps
the fuel temperature below 350°F.

o Radar absorbing material is applied at appropriate parts
of the airframe
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Figure 3-16. Cruise Missile Drag Polars
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SICN

GROUP WEIGHT STATEMENT WEIGHT~-DES
WTS 01-SEP-84 VERSION
11-DEC-84
WING 944.
TAIL 119.
BODY 1493.
NACELLE + AIR INDUCTION 65.
INSULATION - RAM 410.
ATTACH (AIR CARB + BOOST) 100.
TOTAL STRUCTURE 3132.
ENGINE, THRUST REV + EXHAUST 765.
FUEL SYSTEM 392.
TOTAL PROPULSION 1157.
FLIGHT CONTROL 233.
HYDRAULIC, PNEUMATIC + ELECTRIC 173.
AIR COND + ANTI-ICING 97.
LOAD + HANDLING 10.
TOTAL FIXED EQUIPMENT 513.
WEIGHT EMPTY 4801.
OIL + UNUSABLE FUEL 42.
NON-EXP USEFUL LOAD 42,
OPERATING WEIGHT 4844.
PAYLOAD 400.
FUEL 3356.
GROSS WEIGHT 8600.
Figure 3-17. Cruise Missile Weight Statement
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o No crew or crew accommodation equipment is included
o No landing gear is present

o High density fuel (JP-10 synthetic, hydrocarbon) is
employed (no ullage allowance is included in the fuel
tanks; a bellows arrangement allows for fuel expansion)

o Load factor was selected to be 12 to allow for safe
carriage by appropriate aircraft.

3.3.4 Propulsion

The supersonic intercontinental cruise missile was designed
to use a high temperature, nonaugmented, turbojet engine. The
cruise missile has been designed with a Mach 3.5 two-dimensional,
mixed compression inlet system. The inlet features an initial .
compression ramp of 7°. A variable ramp system was used to
provide efficient external compression at the design condition
and low spillage drag at off-design conditions. Porous boundary
layer bleed surfaces were located on all four sides of the
internal duct. The bleed was passed into three compartmented
bleed plenums and exhausted overboard. A bypass system was also
included for engine inlet matching and to enhance inlet restart
capability.

A fixed geometry, expansion/deflection nozzle was selected
for the cruise missile to reduce the overall engine installation
length. The nozzle was designed to use a Prandtl-Meyer expansion
that is formed from the nozzle throat to the exit plane about a
base plug. The resulting supersonic contour was short, so that
frictional losses were lower than for conventional nozzlies. This
gain was offset, however, by the drag due to low pressure on the
base plug.

It is impor+ant to note that the cruise missile has been
designed for a Mach 3.5, 85,000-ft supersonic cruise condition
and that the fixed area expansion/deflection nozzle has been
drawn for a minimum power setting. Cruise thrust and SFC are
shown in Figures 3-18 and 3-19.

3.3.5 Performance
The portion of the cruise missile mission that employs gas

turbine propulsion is shown in Figure 3-20. The gas turbine is
started at a Mach number of 3.5 at 85,000 feet altitude.

The mission consists of a cruise~climb to about 98,000 feet
at constant Mach number. The mission ends at the point where the
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Figure 3-19. Cruise Missile Specific Fuel Consumption
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Figure 3-20. Cruise Missile Design Mission
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fuel is all expended; at this point, the ballistic payload is
released over the target area. The airframe is not recovered.

The cruise is carried out at optimum lift-drag ratio and at
a constant power setting (maximum dry thrust). The resulting
range factor varies from about 6900 to 7100 nautical miles over
the extent of the cruise.

3.4 Long Range Transport — Model 1046-103
3.4.1 Concept Description

This aircraft is shown in the three-view engineering drawing
in Figure 3-21.

The aircraft has an overall length of 220.8 feet and
wingspan of 206.84 feet. The wing has a leading edge sweepback
angle of 37°, a reference area of 4754 square feet, an aspect
ratio of 9, and wing thickness—-to-chord ratio that varies from
0.12 at the root to 0.08 at the tip. High lift for takeoff and
landing is provided by full-span leading edge slot and double-
slotted trailing edge flaps.

The body is designed to carry a payload of 200,000 pounds
consisting of heavy and/or outsized cargo. The cargo compartment
is 142.8 feet long, 17.5 feet wide, and has a maximum height of
13.5 feet. The body has cargo doors and a loading ramp under the
upswept rear fuselage and a hinged nose thus providing a drive-
through capability. The high-flotation landing gear (with
kneeling capability for easy loading) is housed in pods located
on the lower part of the fuselage.

The fuselage volume is totally dedicated to cargo so no fuel
is carried there. All the fuel is stored in the wing.

The aircraft has conventional, horizontal and vertical tails
of area 1060 and 786 square feet, respectively. Elevators and
rudder of 30% chord provide flight control surfaces.

Propulsion is provided by four nacelle-housed P&W parametric
turbofan engines of bypass ratio 5.74 sized to produce 30,050
pounds of static thrust.

The design constraints imposed on this configuration
include:

o Payload 200,000 pounds

o Range 4,600 nautical miles
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o Critical Field Length 8,000 feet
o Load Factor 2.5
o R/C with OEI 100 feet/minute

o No fuel stored in fuselage
3.4.2 Aerodynamics

The aerodynamic characteristics of the Model 1046-103 in the
form of drag polars for important Mach numbers are shown in
Figure 3-22.

3.4.3 HWeights

Figure 3-23 shows the weight statement of the Model 1046-
105. Weight estimation is consistent with a TAD of 1990.

3.4.4 Propulsion System

The nonaugmented turbofan engine selected for the Model
1046-103 transport concept was chosen engines investigated in the
Advanced Technology Engine Studies (ATES) program. The engine
cycle included a bypass ratio of 5.74, an overall pressure ratio
of 35.0, and a combustor exit temperature of 2600°F.

A turboprop engine, the Pratt & Whitney STS679, has also
been supplied for use with the Model 1046-105. This three—spool
advanced technology engine features a two—axial stage, one
centrifugal stage, high compressor driven by a single-axial stage
turbine, a four—axial stage low compressor driven by a single-
stage turbine, and a gearbox driven by a three-stage free
turbine. The overall pressure ratio of the engine is 27.5, the
combustor exit temperature was 2379°F, and the speed of the power
turbine is 10,960 RPM.

The propeller selected for use with the STS679 was chosen
from a previous Boeing in-house study of near-term and advanced
propellers supplied by Hamilton Standard. Propeller tip speed -
and loading were also selected based on this study. The system
chosen was a counter rotating prop fan. This small diameter,
highly loaded, multibladed, variable pitch, unducted fan has been -
designed for use on aircraft with cruise speeds up to Mach 0.85.

Thrust and SFC of the installed turbofan engine are shown in
Figures 3-24 and 3-25, respectively.
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Figure 3-22. Long Range Transport Drag Polars
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Group Weight Statement Weight Design Data
IADSWT2 07/01/77 Version Lbs
Aug 27
Wing 60321 Gross Wt 623360
Horizontal Tail 5294 Design Wt 623360
Vertical Tail 4128 Landing Wt 528000
Body 70478 Load Factor 3.75
Main Gear 29716 Mach SL .48
Nose Gear 3219 Mach Max .00
Auxiliary Gear 0 Max O 0
Nacelle or Eng Section 7511 VStall 107
Air Induction 0 CLMAX 2.84
Wing
Total Structure 175668 SGross 4758
SEXP 3840
Engine + Accessories 22507 Aspect Ratio 9.00
Thrust Reversers 3117 Taper Ratio .36
Exhaust + Deflectors 0 TOC Root .12
Fuel System 2317 TOC Tip .08
Engine Control 100 Sweep E.A. 33
Starting System 400 H Tail
SGross 1061
Total Propulsion 28440 SEXP 921
Aspect Ratio 4.50
Flight Control 7423 Taper Ratio .36
Auxiliary Power Plant 931 TOC Root .09
Instruments 860 TOC Tip .09
Hydraulic + Pneumatic 2139 Sweep E.A. 29
Electrical 3528 Tail Arm 112
Avionics 3451 V Tail
Armament 0 SGross 736
Furnishings + Equip 4483 Aspect Ratio 1.65
Air Cond + Anti-Icing 3103 Taper Ratio .36
Photographic 0 TOC Root .10
Load + Handling 0 TOC Tip .10
Sweep E.A. 25
Total Fixed Equipment 25917 Tail Arm 102
Body
Weight Empty 230025 Swet 12580
Length 221
Crew 645 Width 21.70
Unusable Fuel 389 Depth 19.60
0Oil + Trapped 0il 441 Delta P 8.58
Tare Weight 0 Landing Gear
Operating Items 0 NG Length 90
Crew Equipment 90 MG Length 130
MG Tires 16
Non-Exp Useful Load 1565 Propulsion
SLST 30084
Operating Weight 231590 SFC .58
Tank Volume 28970
Payload 200000 Systems
Passengers + Baggage 0 KVA Reqd 202
Fuel 191770 Volume Pres 50690
Gross Weight 623360

Figure 3-23. Long Range Transport Weight Statement
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Figure 3-24. Long Range Transport, Cruise Thrust
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3.4.5 Performance

The Model 1046-103 was designed to carry a payload of
200,000 pounds of cargo over a range of 4600 nautical miles. To
minimize aircraft size and cost the mission is flown at optimum
altitude and cruise Mach number. The mission is illustrated in
Figure 3-26.

A summary of the designed mission is shown in Figure 3-27.
3.5 Lightweight Fighter - Model 985-213 (Modified)
3.5.1 Concept Description

The vehicle consists of a blended wing-body configuration
with twin vertical tails mounted on the wings at about the 3/4
span location (Figure 3-28).

The overall length of the aircraft is 44 feet and the
wingspan is 19.7 feet. The wing has a NASA SCAT 15 plan form
with 74° leading edge sweep, with an aspect ratio of 1.46, taper
of 0.19 and a reference area of 266 square feet. The wing
thickness varies from 4% at the root to 3% at the tip. Wing
camber is variable throughout the flight envelope.

The aircraft carries a one-person crew in a low-profile
cockpit at the design takeoff gross weight of 12,500 pounds, the
design wing loading is 47 pounds per square foot, and the
thrust/weight ratio if 1.32.

Wing structure is skin and multispar construction of
graphite composite material. The structure is designed for a
load factor of 7.33 g’s at the flight weight of 12,500 pounds, a
dynamic pressure placard of 2133 pounds per square foot (Mach 1.2
at sea level) and a Mach 2.2 dash capability at altitude.

Air-to—air weapon capability consists of two lightweight
(CLAW) missiles mounted semisubmerged on the upper aft fuselage.
A 20-mm gun and 250 rounds of ammunition are carried internally.

3.5.2 Aerodynamic

Estimated aerodynamic characteristics of the unmodified
Model 985-213 are presented in Figure 3-29 through 3-31. Figure
3~-29 shows the detailed breakdown of drag—at—zero-lift for three
flight conditions.

Trimmed drag polars for typical subsonic and supersonic
flight conditions are shown in Figures 3-30 and 3-31,
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Figure 3-26. Long Range Transport Design Mission Profile
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Components M=0.9 M=1.2 M=1.8
30,000 Feet | 30,000 Feet | 50,000 Feet
Wing (A,,.=383 ft?) 0.00354 * 0.00518
Skin friction 0.00349 0.00319 0.00305
Form 0.00005 ——— ———

Wave =0 | mem——— * 0.00213
Body (A,,.=324 ft?) 0.00340 * 0.00367
Skin friction 0.00247 0.00226 0.00214

Form 0.00009 —_— ———
Wave ———— * 0.00182
Interference
(wing-body) 0.00084 * -0.00029
Vertical tails
(A,.. = 74 ft?) 0.00186 * 0.00099
Skin friction 0.00077 0.00071 0.00068
Form 0.00001 —— ——
Wave ———— * 0.00035
Interference ‘
{(vertical-wing) 0.00108 * -0.0004
Excrescence 0.00150 0.00220 0.00183
Inlet diverter** 0.00070 0.00110 0.00090
Misc Items 0.00133 0.00333 0.00333
Canopy 0.00025
Gun fairing 0.00010
UHF/1FF 2.5 Factor 2.5 Factor
antennas (2) 0.00005 applied to applied to
Fuel tank vents M=20.9 M=20.9
(4) 0.00001 estimate estimate
Nav Beacon 0.00001
Air data probe 0.00011
Migsiles (2 semi-
IL submerged) 0.00080
Total non-lifting
drag 0.01333 0.01875 0.01690
Camber and trim drag
at C, = 0 0 0.00770 0.00780
Total drag at C, =
0, Cpo 0.01333 0.02645 0.02470

S,esr = 260 feet?
* Not itemized; total C,, @ M = 1.2 = 0.00412

Figure 3-29. Zero Lift Drag Summary
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respectively. The drag of the new aircraft should be close to
that of the original; differences due to the aft-body reference
drag changes are to be expected because of the different
installation.
3.5.3 Weights

The weight statement for the 985-213 is shown in Figure 3-

32. Weight estimation ground rules and assumptions are listed
below:

o The majority of aircraft structure is advanced composites
(graphite-epoxy)

o Airframe Integrated Nozzle
o Fly-by-wire surface controls

o Avionics equipment in compliance with statement-of-work
requirements

o Semisubmerged CLAW missiles (2)

o Final aircraft geometry is the result of aerodynamic and
weight parametric trade studies and represents the best
compromise for overall performance

o Lightweight M-197 20-mm Gatling gun with gas drive

0 Judicious location of gun, ammunition, missiles, and fuel
such as to minimize CG gravel as these items are expended

0 Fuel pumping for trim control.
3.5.4 Propulsion

Uninstalled engine performance was computed using the Pratt
& Whitney Aircraft parametric engine cycle deck, CCD 1178-08.00.

The engine is a minimum bypass ratio, dry turbofan having a max
dry uninstalled thrust of 16,500 1b sea level static. The engine

cycle characteristics are bypass ratio (BPR) = 0.2, overall
pressure ratio (OPR) = 26, turbine inlet temperature (TIT) =
3000°F.

The inlet is located under the fuselage, centerline mounted.
it is a two—-dimensional, external compression inlet utilizing a
variable ramp, four-shock system.

This inlet has two movable external ramps, a 7.30 initial
ramp angle, a boundary layer control bleed system consisting of
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WEIGHT
LBS.
WING 1180
HORIZONTAL TAIL
VERTICAL TAIL 100
BODY 1520
MAIN GEAR 380
NOSE GEAR 110
LAUNCH AND RECOVERY GEAR
ENG SECTION OR NACELLE 360
STRUCTURE (3650)
ENGINE AND EXHAUST 2200
THRUST REVERSER
ENGINE ACCESSORIES 50
ENGINE CONTROLS 80
STARTING SYSTEM 100
FUEL SYSTEM 340
PROPULSION (2770)
FLIGHT CONTROLS 260
AUXILIARY POWER PLANT
INSTRUMENTS 70
HYDRAULIC & PNEUMATIC 120
ELECTRICAL 270
AVIONICS 390
ARMAMENT 40
FURNISHINGS & EQUIPMENT 180
AIR CONDITIONING 120
ANTI-ICING 10
LOAD & HANDLING 30
FIXED EQUIPMENT (1490)
WEIGHT EMPTY 7910
CREW 200
UNUSABLE FUEL 30
OIL AND TRAPPED OIL 60
EXTERNAL TANKS
GUN INSTALLATIONS 260
WEAPON INSTALLATIONS 60
CREW EQUIPMENT 10
NON-EXP USEFUL LOAD (620)
OPERATING WEIGHT 8,530
FUEL - INTERNAL 3,630
FUEL - EXTERNAL
AMMUNITION-250 RNDS 20MM 180
J CLAW MISSILES 160
r GROSS WEIGHT (MISSION T.O) 12,500
BASIC MISS FLT DES WT 10,400
FULL INTERNAIL FUEL 3,630
Figure 3-37. Weight Stafement
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porous bleed on the second and third ramp surfaces, sideplates,
and throat bleed slot located aft of the normal shock. The
throat slot also acts as a bypass to remove excess inlet airflow
for matching engine airflow demand with inlet supply. The inlet
capture area is 4.44 ft?.

An engine mounted 2-D/C~D nozzle which incorporates a fixed
throat and a variable exit area was utilized for efficient engine
operation.

3.5.5 Performance

The aircraft was configured to provide low drag at the
design Mach number of 1.8. A design mission was specified (see
Figure 3-33) that involved flight at altitudes limited to 50,000
feet (a pressure suit limit). Mission characteristics are
summarized in Figure 3-34.

3.6 Carrier Air Vehicle/Transatmospheric Vehicle
3.6.1 Concept Description

The Model 896-111 is a two-stage-~to-orbit system with both
stages being recoverable (Figure 3-35).

The orbiting vehicle is carried in a cavity in the underside
of the fuselage of the first stage. This concept minimizes the
requirement for the large amount of ground-support equipment
normally associated with today’s conventional vertical takeoff
rocket launch system. The proposed system utilizes a horizontal
takeoff and landing mode.

For mating, the booster and orbiter are each towed to an
"alert pad" and the vehicles aligned with their longitudinal
centerlines coincident with each other. The orbiter is then
towed forward into the booster body cavity and mechanically
joined to the booster. The orbiter landing gears are retracted,
and the booster orbiter combination is towed to the LOX/LH2
servicing facility which is adjacent to the TAV pad to allow all
cryogenic loading and replenishment to be controlled in one area.
After completion of the takeoff, climb, and separation, the
booster would return to the base to be recycled for any necessary
maintenance.

The CAV is illustrated in Figure 3-36. The two-man crew and
aircraft subsystems are located in the forward body. The two
cylindrical LH2 fuel tanks are paired in the forward fuselage
with the LOX tank pair located directly to the rear. The nose
landing gear is located forward and below the LH2 tankage. The
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@ RADIUS

(D) TAKEOFF FUEL ALLOWANCE

e 2.5MIN IDLE FUEL FLOW RATE
e % MIN MAX POWER FUEL FLOW RATE
® MAX POWER ACCEL TO CLIMB SPEED

MAXIMUM POWER CLIMB (q = 2,132 psf)
MAXIMUM POWER CLIMB (M=1.8)
SUPERSONIC CRUISE (M=1.8, h=50,000 FT)
COMBAT — 1 FULL POWER TURN
SUPERSONIC CRUISE (M=1.8, h=50,000 FT)
MINIMUM POWER DESCENT

RESERVES; 20 MIN SEA LEVEL LOITER
OPTIMUM MACH

CYONCNONONONS)

Figure 3-33. ODesign Mission Profile
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RADIUS = 200 NMI
INITIAL DISTANCE FUEL
WEIGHT - 1B NMI LB

TAXI 12,500 0 160
TAKEOFF 12,340 0 50
ACCELERATE 12,290 2 60
CLIMB 12,230 31 660
CRUISE 11,570 167 690
COMBAT 10,880 0 470
EXPEND PAYLOAD 10,410 0 -
TURN AROUND 10,070 5 220
CRUISE 9,850 195 810
LOITER 9,040 0 510
oW 8,530 (3630)

Figure 3-34. Mission Summary
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nacelles, with fixed supersonic inlets, are located outboard of
the body cavity which accommodates the orbiter. The eight
wheeled main landing gear is integral with the nacelle and
retracts forward into the lower nacelle when stowed. The wings
are mounted high on the fuselage to provide clearance with the
underslung orbiter. Wing tip mounted verticals are used to
provide directional stability. A single SSME rocket engine is
used during boost phase and is located on aircraft centerline at
the wing trailing edge.

The booster forward body contains LOX/LH2 rocket propellants
and propellant crossfeed system to the orbiter to ensure that the
orbiter vehicle propellant tanks are completely filled at stage
separation. The JP-4 airbreathing fuel is contained in the
outboard wings to reduce the total wing bending moments at the
side of body. The booster is designed for a two-man crew.
Located forward, aft, and below the crew compartment are the
avionics/electronics equipment compartments. ECS equipment,
oxygen, and electrical/hydraulic subsystem equipment are located
in the fuselage aft of the pilot.

The first stage (booster) utilizes present day state-of-the-
art construction.

BODY

Body structure is semimonocoque with frame supported
graphite/polyimide honeycomb sandwich skin panels. Two deep
aluminum honeycomb beams form the sidewalls of the orbiter
recess, carrying twin lower-body longerons and providing vertical
shear capability. Attached to the wing by the wing-to-body
longeron, these beams extend aft of the wing and form the inboard
structure of the airbreathing engines mounting structure. Within
the body cavity, the beams carry the pair of trapezes which
control the relative movement of the booster and orbiter to
ensure clean separation.

The other engine supports are provided by vertical beams
attached below the wing, the center one acting as a duct splitter
over its forward portion, the outboard one forming the nacelle
wall. Further structure is provided by the horizontal duct
splitter, which continues aft as a firewall separating the upper
and lower engine pairs, providing lateral shear stiffness.

Engine removal is effected through individual hatches on the top
and bottom surfaces of the nacelle. Removal of any or all of the
hatches does not affect the structural integrity of the engine
support structure.
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The cylindrical LH2 tanks are paired in the forward
fuselage, and are link-supported inside the body monocoque. Fore
and aft loads are taken by a thrust structure joining the aft
tank ring to a body bulkhead which serves to separate the fuel
and oxidizer bays, and also forms a manufacturing joint. Aft of
this is the LOX tank pair, also link supported, with a thrust
structure to the front spar of the wing. Forward of the LHZ2
tanks are the nose landing gear bulkhead, the equipment and ECS
bays, and the crew compartment and capsule.

WING

The high-mounted wing carries the four orbiter attachment
points, two each on the front and rear spar center sections. The
four—-spar wing has graphite/polyimide honeycomb sandwich skins
with integral spar caps. Stringers, spar webs, and ribs are
graphite/epoxy co-cured. The wing leading edge is a built-up
titanium structure with provisions for thermal stress relief.
Control surfaces are of graphite epoxy honeycomb.

VERTICAL TAILS

The vertical tails are of similar construction to the wing.
The possibility of using split rudders is being studied. This
will enhance directional stability in slip—-flow conditions by
forming wedge-type vertical tail surfaces.

LANDING GEAR

The main landing gear comprises two struts, each carrying an
eight wheeled truck, retracting forward into the nacelle lower
surface. Vertical loads are reacted to the wing structure by a
bulkhead spanning between the inboard beams and the outboard
nacelle wall.

The nose landing gear is mounted on the bulkhead ahead of
the LH2 tanks, and retracts rearward to lie below the tanks.
Provigion is made for emergency extension should the hydraulic
system fail. Because of the wide spread between takeoff and
landing weights, an Adaptive two-stage oleo design is proposed
for all three elements of the tricycle landing gear.

3.6.2 Aerodynamics

The drag data shown in Figure 3-37 and 3-38 have been
evaluated using several Boeing programs to calculate drag from
various sources (skin friction, wave drag, etc.). The data base
estimation uses simplified methods that have been calibrated to
match the results from the detailed drag analysis.
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- ]

The data base program evaluates tables of:

a. drag coefficient at zero lift as a function of altitude
and Mach number

b. drag coefficient due to lift as & function of lift
coefficient and Mach number

c. 'drag-area’ or D/q increments as a function of Mach
number

The latter tables allow the mission analysis program to take
account of the drag changes that result when:

a. the rocket engines are fired (drag change due to reduced
base area)

and !

b. the TAV is not attached to the CAV (drag change is due
to modified base area and wetted area).

3.6.3 Weights

The weight of the Model 896-111 was estimated using the
Boeing Level-l1l weight estimating program, PDWTS, for the
conventional airplane components; rocket engine, cryogenic
systems, etc. were evaluated using detailed analysis of the
systems.

A typical weight statement is shown.in Figure 3-39.
3.6.4 Propulsion System

The first-stage booster is powered by eight advanced
augmented airbreathing engines (F-101 uprated) each producing
35,000 1b static sea level thrust and one SSME rocket engine
(A'/Ae = 150) having a vacuum thrust rating of 530,200 1b and an
ISPVAC = 463.5 sec using LOX/LH2 propellants. The booster launch
system utilizes airbreathing propulsion during the takeoff and
climb to 30,000 ft and M = 0.86. At this time, the rocket
engines on both stages ignite and operate until reaching 117,500
ft altitude and 3000 ft/s velocity where stage separation occurs.

The airbreathing propulsion system performance in the
mission analysis program is calculated from tables of installed
thrust, fuel flow, and corrected airflow of the engines. The
installed performance data are calculated by the program using
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Model 896-111

GROUP WEIGHT STATEMENT
WTS 01-SEP-84 VERSION
11-FEB-86

WEIGHT-LBS

Wing

Tail

Body

Alighting Gear

Nacelle + Air Induction
Tanks, TH Struct & Growth
Payload Supt & Separation

Total Structure

Engine, Thrust Rev + Exhaust
Starting + Control

Fuel System

Rocket Propulsion

RCS Inerts

Total Propulsion

Flight Control

Auxiliary Power Plant
Instruments

Hydraulic, Pneumatic + Electric
Avionics

Furnishings + Equip

Air Cond + Anti-Icing

Load + Handling

Total Fixed Equipment
Weight Empty

Crew

0il + Unusable Fuel

Non RCS WP & IFL

Residuals & Reserves @ LND
Non-Exp Useful Load
Operating Weight

Payload

Rocket Propellant-Ascent

Preignition Losses—-Rocket

Fuel

GROSS WEIGHT

94723.

9227.
34340.
32362.
11297.
24995.

8300.

215243.

32160.
632.
1823.
15663.
2103.

52380.

2666.
1626.
1020.
10050.
1998.
720.
1405.
1520.

21005.
288629.
560.
1208.
1951.
2367.
6086.
294715.
577500.
299300.
9955.
128530.

1310000.

Figure 3.39. CAV Weights
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manufacturer’s uninstalled performance data together with user
supplied inlet, nozzle, and aftbody drag data.

Rocket engine performance is estimated using vacuum thrust
and specific impulse corrected for ambient pressure effects.

3.6.5 Performance

The typical mission for the CAV consists of takeoff (with a
ground roll of about 10,000 feet) and a climb to 30,000 ft and M
= 0.862 using augmented, airbreathing engines.

After climbing to 30,000 ft and M = 0.862 under augmented
airbreathing power, all rocket engines are ignited with the
takeoff and climb taking 820.9 seconds. The vehicles proceed
through a dual burn accelerated climb to the separation
conditions under airbreathing and rocket thrust. During this
initial boost the maximum dynamic pressure experienced is 1050
PSF and occurs at an altitude of 40,300 ft at M = 1.97. The
vehicles separate at 117,500 ft, V = 3000 FPS where the dynamic
pressure is 65 PSF. The orbiter proceeds to the required
injection conditions for the particular mission with its
propellant tanks full at separation. After separation the
booster is lofted to 156,000 £t by its own momentum, descends,
turns to the required heading, and returns to the launch site or
an alternate base through powered and gliding flight. At no time
does the booster fly faster than M = 2.95; experiences Mach
numbers greater than 2.0 for only 212 seconds. This avoidance of
a hostile flight environment enables the booster to be
constructed of conventional materials without a thermal
protection system. This is illustrated in Figqure 3-40.

3.7 Hypersonic Interceptor - Model 1074-0006
3.7.1 Concept Description

The vehicle, illustrated in Figure 3.41, has an overall
length of 169 ft 2 in and a wing span of 63 ft 4 in. The wing
has a leading edge sweep of 72° on the inboard section and 50° on
the outboard section, a reference area of 2,085 ft? an aspect
ratio of 1.923, and a constant wing thickness ratio of 3.5%.

The airplane is designed for a one-man crew. Located
forward, aft, and below the crew compartment are
avionics/electronic equipment bays. Included in the 1,200 1lbs of
avionics equipment are target acquisition, communication,
navigation and identification, information management, and
defense functions. ECS equipment, oxygen, and
electrical/hydraulic subsystem equipment are located in the
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fuselage aft of the pilot. The body fuel is carried in integral
insulated tanks with a capacity of 53,000 1lbs of liquid hydrogen
fuel.

The vertical fin has an area of 240 ft?, a leading edge
sweep of 60° and an aspect ratio of 0.98.

The horizontal tail has an area of 578 ft?, leading edge
sweep of 60° and an aspect ratio of 1.75.

3.7.2 Aerodynamic

Estimated aerodynamic characteristics of the Model 1074-0006
are presented in Figures 3-42 through 3-44.

Trimmed drag polars are shown for typical subsonic,
supersonic and hypersonic flight conditions are shown in Figures
3-42 through 3-44.

In Figures 3-42 through 3-44, the drag generated by PWSIM is
compared to LAAP (Large Airplane Analysis Program) and APAS
(Aerodynamic Preliminary Analysis System) computer codes at
subsonic and supersonic speeds and to APAS at hypersonic speeds.
3.7.3 Weights

The weight statement for the 1074-0006 is shown in Figure 3-
45. Weight estimation ground rules and assumptions are listed
below:

o The majority of aircraft structure is advanced hot
structures, capable of enduring the high temperatures of
sustained hypersonic flight

o Airframe Integrated Nozzle and Inlet

o Fly-by-wire surface controls

o Avionics equipment as described in Section 3.7.1

o Internal weapon carriage on two rotary launchers

o Final aircraft geometry is the result of aerodynamic and
weight parametric trade studies and represents the best

compromise for overall performance

o Judicious location of migssiles and fuel such as to
minimize CG travel as these items are expended

0 Fuel pumping for trim control.
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1074-0006

GROUP WEIGHT STATEMENT
WTS 01-SEP-84 VERSION
87/02/17

WEIGHT-LBS

Wing

Tail

Body

Alighting Gear

Nacelle + Air Induction

Total Structure

Engine, Thrust Rev + Exhaust
Starting + Control
Fuel System

Total Propulsion

Flight Control

Auxiliary Power Plant
Instruments

Hydraulic, Pneumatic + Electric
Avionics

Armament

furnishings + Equip

Air Cond + Anti-Icing

Load + Handling

Total Fixed Equipment
Weight Empty

Crew + Equipment
0il + Unusable Fuel

Non-Exp Useful Load
Operating Weight

Payload
Fuel

GROSS WEIGHT

10128.
5267.
23465.
4986.
5124.

48970.

7578.
160.
2133.

8871.

1106.
500.
220.

1846.

1200.
340.
500.
855.

20.

6587.
65427.

280.
1329.

1609.
67037.

3000.
52488.

122525.

Figure 3—-45. Weight Statement

Hypersonic Interceptor
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3.7.4 Propulsion

Uninstalled engine performance was computed using the
General Electric tandem turboramjet hyperjet, GE16/F40 study Bl.
The engine is a low bypass ratio, hydrogen fueled augmented
turboramjet having a wmax augmented thrust of 57,718 1lb sea level
static. The engine cycle characteristics are bypass ratio (BPR)
= 1.5, overall pressure ratio (OPR) = 25, turbine inlet
temperature (T,;) = STOICHIOMETRIC.

The inlet is located under the fuselage, centerline mounted.
It is a two-dimensional, mixed compression inlet.

This inlet has a fixed first ramp, a flexible second ramp,
and a movable third ramp. The boundary layer is controlled by
means of porous bleed on the second and third ramp surfaces,
sideplates, and a throat bleed slot located aft of the normal
shock. The throat slot also acts as a bypass to remove excess
inlet airflow for matching engine airflow demand with inlet
supply and controls the position of the throat shock. The inlet
capture area if 24.40 ft?, sized for air requirements at Mach 5,
100,000 feet.

The aftbody of the interceptor serves as the expansion
surface for the engine. Also, there is a turning vane which is
used to maintain flow attachment of the exhaust plume on the
aircraft aftbody throughout the aircraft flight regime.

3.7.5 Performance

The aircraft was configured to provide low drag at the
design Mach number of 6.0. A design mission was specified (see
Figure 3-46) that involved flight at altitudes greater than
100,000 feet, and sample results are shown in Figure 3-47.

4.0 Sample Results

This section contains an example PWSIM output (Figure 4-1).
The output which is for the tactical fighter consists of:

o namelist inputs

o mission definitions

o airplane design (geometry) summary
o group weight statement

o weight design data and sensitivities

1i3




detailed weights

minimum profile drag

wave drag

drag due to 1lift

zero lift drag versus Mach number
mission results

level flight performance
engine data

inlet tables

aftbody drag tables
installed engine performance
airplane inlet maps

airplane afterbody maps
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XMIAB
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0.0,
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0.0. 00. 0.0, 0.0, 0.0,

0.0,

= 0.0,

=0
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0.0. 0.0, 00, 0.0, 0.0,

0.0,
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0.0,
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$558666556656855565

©000500500000000000
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00000020 00000000000
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00O0S920000000000200
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0003202 CCO000000200
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Figure 4-1.
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COPMIN TABLE VS. MACH NO. AND ALTITUDE
ALT~-FT 0. 15000. 300C0. 45000. 80000 75000. 90000.
M= 10C0 .013052 .012870 .015104 .016830 019127 . 021966 .0252394
M= . 3000 .010984 .011703 .012588 .012821 015674 .017812 .020355
M= 5000 .010064 .010704 .011489 .0126@8 014211 .01608 1 .018292
M= 7000 .009402 .002990 .Q107 11 .011789 . 013196 .014897 .0169C0
M= 9000 . 008940 .009484 .010172 .011184 012501 .014080 .018957
M= 1. 1000 .008g922 .Q0%4a71 01012 Q011142 0t2441 .01400% .015842
M=1.2000 .008572 . 002098 .Q0974 11 .010697 011939 .013434 .015188
M=i.3000 .008272 .C08779 .009398 .010319 011514 .0129S 1 .014636
M=1{. 4000 .007981 . 008469 . 002066 .0099253 011103 .01248S .01410%
M= 1. 5000 .007698 .008 169 .008744 .009598 010705 .012035 013594
M=1 . 6000 .007424 .007878 .008432 .0092%5 010321 .011601 .013102
M= 1. 7CCO .007163 .CO7601 08126 coe92e cl0ese .011180 .04262%
M=1.80C0O .Coge 10 007332 .C078439 008814 . 209604 010782 .012185
M= 1. 9020 Notol-1-13-1 .C27C72 .CO73571 C083Ce .008283 .010408 .011751
M2 000 .C08:27 .Q0G8B21 .C07302 .COBO 14 coB8833 .010038 011331
eeswve COMPONENT WAVE DRAG COEFFICIENTS ewswew
MACH B80ODY WINGS TAILS NACELLE TOTAL
. 100 . 00000 . 0000 -CCcCo . 00000 0C000
.3CO .00000 .0CO%T .Q0CC .Q0000 00000
.500 . 00200 . 0002 .CCZ00 .C0000 00000
.7C0 .000CO .00CT Weleloiaie] .00000 00000
.900 .0Q00C0o . 0C0Q0 .QCCT . 00000 - 00000
t.100 . Q0458 .01382 .CO1C6 . 00000 .01916
1.2C0 .00354 .015186 .CO27 . 00000 .02098
1.300 .Q04s9 .0158% .00148 .CO000 .02173
1 400 .C0465 .01387 .CO18C 00000 .02082
1.500 £2470 .Q1365 .C01*S2 . Q0000 .01987
1.600 .C0376 .01280 .CO153 . 00000 .01889
1.700 .COS5CS .01208 .00183 .CO000 .01876
1.800 .00S33 01122 .Lov2 .00C00 .01847
1.900 .00582 .01061 .00181 .Q00CO .01804
2.000 .00591 .00965 .00190 .00000 .01747

ORAG-DUE-TO-LIFT FACTORS ( CDILIFT)

= K1(CL""2) + K2(CL*"4) )

WATH RO XKL COLFACT RT XRCY COCFACTY Ke
. 10000 -06ed9  T-0O0000 Oosodd T 05038 T 00000 oLTox:§
. 30000 .06550 1. 00000 .065%0 .04711 1 CO000 .047 11
-50000 .06654 1.00000 .06654 .04346 1.0C000 .04346
. 70000 .Q6841 1.00000 .06841 .04114 1.00000 .Q4114
. 80000 .08188 1.00000 .08188 .04402 1.C0000 .04402
1.10000 . 11017 1.00000 . 11017 . 19570 1. 00000 - 19570
1.20000 . 15494 1.00C00 15494 .21826 1. 00000 .21826
1.30000 . 19459 1. 00000 19459 .18184 1.00C00 .18184
1.40000 .2321S 1.00C0Q0 .23215 . 11759 1.000C0 .117%9
1.50000 .27230 1.00000 .27230 .07582 1 00000 .07582
1.60000 . 30664 1.00000 . 30664 .06698 1.00C00 .06698
1.70000 .34010 1.00000 .34010 .C5499 1. 00000 .05499
1.80000 .37298 1.000C0 .37298 .04010 1.00000 .04010
1.90000 .40534 1.00000 405234 .03662 1.00000 .03663
2.00000 .43739 1.00000 .43739 .03928 1.00000 .03928

Figure 4-1. TAPEG6 — General Aircraft Output Data (Continued)
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COPMIN TABLE VS. MaCH NO. AND ALTITUDE

e N e e e C R C A r e cErt C T e E e T —---- -

ALT-FT 0. 15000. 300C0. 45000. 60000. 75000. 80000.

Ms . 1000 .013082 .013970 .015104 .016830 .018127 -021966 -025294
M= 3000 .010984 .0117023 -012588 .013921 .015674 .017812 -020355

M= | S000 .Q010064 .010704 .011489 .0126358 .014211 .016081 .018292
M= . 7000 . 009402 .002e30 .010711 .011789 .013196 .014897 -016900
Ms 9000 .008940 .009494 010172 .011184 .012501 .014090 .015957
M=1 . 1000 .008922 .0098471 010142 .011142 .012441 .014005 -015842
M=1.2000 .008572 .0Q0e098 -009741 .010897 .011939 .013434 .015188
M= 1. 3000 .008272 .008779 .009398 .010319 .011514 .012851 -0146836
Me=1.4000 .007981 .008469 - 009088 .009253 .011103 .01248S .014106

M=1. 5000 .007698 .008169 -008744 .009c898 .010705 .01203S .013594
M=1{. 6000 .007424 .0Q7878 -008432 .0092¢SS -010321 .011601 -013102

M=1{ . 7000 .007 163 .C07601 .COB:26 .CcOee29 .Cceoss .011190 012625
M=1. 8000 .C06810 .007332 .C07849 .Q0B& 14 .CL9604 .010792 .012185
M= 1. 9000 .0088€5 .CC7072 .COT37 1 cog2129 .Q22283 010408 .011751%
M=2.0000 . 008427 . 005821 .0073202 .0080 14 .008833 .010038 011531

vesw=s COMPONENT WAVE ORAG COEFFICIENTS evoens

MACH B80ODY WINGS TAILS NACELLE TOTAL
. 100 -C0000 - 00000 .CCO00 .00C00 - 00200
.300 . 00000 .00000 .00CCO . 00000 .00C0O0
.S00 .000C0 - 00000 .COC00 -0CO00 . 00000
. 700 . 00000 .000CO .C0000 .0C000 .00000
.900 . 00000 .0C000 -00020 .00000 .00000

1 100 .004s58 .01352 .CO106 .C0000 .01916

1.200 .004154 .01516 .Co127 .00000 .02098

1.300 -00459 .0156% 00148 .CO000 .02173

1 400 .C0465 .01467 .001€2 .QCCC .02082

1.5C0 .Q0470 .01365 L0152 .QC000 .Q1987

1.800 -CO376 .01280 .CO183 . 00000 .01889

1.7C0 .C0S5CS .01208 .00163 . 00200 .01876

1.800 -CCS533 .011a2 CO172 .QOC00C .01847

1.800 .00562 .01061 .00181 .000C0O .01804

2.000 -CCs91 .009%65 .00180 . 00000 .01747

ORAG-DUE-TO-LIFT FACTORS ( CD(LIFT) = K1(CL*"*2) + K2(CL**4) )

NATHA NU XRCT  COLFATT RT XRCZ TOLFACY RZ
o000 T 0B4d9 T 00000 T.083J9 T D5U38 TIOCOO T OS038
- 30000 .Q6550 1 0COCO .06550 04711 1 0000 .04711
.50000 .068654  1.00000 065854 04346 1 CCCQO 04346
. 70000 .Q6841 1.00000 .06841 .04114 1.00000Q .04114
. 80000 .08188  1.00000 .08188 04402 1.£0000 .04402

1. 10000 .11017  1.00000 -11017 .12570 1 CO00Q .19570 -
1.20000 . 15494  1.00000 15494 .21826 1.00000 .2182¢
1.30000 . 19459 1 00000 19459 18184 1 00000 .18184
1.40000 .23215  1.00000 .23215 .11759 1.00000 .11758
1.50000 .27230  1.00000 .27230 07582 1 00000 .07582
1.60000 .30664  1.00000 30664 .06698 1.00000 .06698
1.70000 .34010  1.00000 34010 05499 1. 00000 .05499
1.80000 .37298  1.C00CO .37298 .04010  1.00000 .04010
1.80000 .40534  1.00000 40534 03663 1.00000 .03663
2.00000 43739 1.00000 .43739 .039128 1.00000 .03928

Figure 4-1, TAPES — General Aircraft Output Data (Continued)
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